
Package: optimx (via r-universe)
August 23, 2024

Version 2024-4.18

Date 2024-04-18

Title Expanded Replacement and Extension of the 'optim' Function

Author John C Nash [aut, cre], Ravi Varadhan [aut], Gabor Grothendieck
[ctb]

Maintainer John C Nash <nashjc@uottawa.ca>

Description Provides a replacement and extension of the optim()
function to call to several function minimization codes in R in
a single statement. These methods handle smooth, possibly box
constrained functions of several or many parameters. Note that
function 'optimr()' was prepared to simplify the incorporation
of minimization codes going forward. Also implements some
utility codes and some extra solvers, including safeguarded
Newton methods. Many methods previously separate are now
included here. This is the version for CRAN.

License GPL-2

URL https://github.com/nashjc/optimx

BugReports https://github.com/nashjc/optimx/issues

LazyLoad Yes

Imports numDeriv, nloptr, pracma

NeedsCompilation no

Suggests knitr, rmarkdown, setRNG, BB, ucminf, minqa, dfoptim,
lbfgsb3c, lbfgs, subplex, marqLevAlg, testthat (>= 3.0.0),
R.rsp

VignetteBuilder R.rsp

Config/testthat/edition 3

Repository https://nashjc.r-universe.dev

RemoteUrl https://github.com/nashjc/optimx

RemoteRef HEAD

RemoteSha 9d3dc3778439ccf7a1dae386ccc8c1dd32905539

1

https://github.com/nashjc/optimx
https://github.com/nashjc/optimx/issues

2 Contents

Contents

optimx-package . 3
axsearch . 5
bmchk . 7
bmstep . 10
checksolver . 11
coef . 12
ctrldefault . 13
fnchk . 13
gHgen . 15
gHgenb . 18
grback . 21
grcentral . 23
grchk . 24
grfwd . 26
grnd . 27
grpracma . 28
hesschk . 29
hjn . 31
kktchk . 33
multistart . 35
opm . 37
opm2optimr . 43
optchk . 44
optimr . 46
optimx . 50
polyopt . 57
proptimr . 60
Rcgmin . 60
Rcgminb . 67
Rcgminu . 69
Rvmmin . 71
Rvmminb . 78
Rvmminu . 79
scalechk . 81
snewton . 82
summary.optimx . 85
tn . 86
tnbc . 89

Index 91

optimx-package 3

optimx-package A replacement and extension of the optim() function, plus various op-
timization tools

Description

optimx provides a replacement and extension of the link{optim()} function to unify and stream-
line optimization capabilities in R for smooth, possibly box constrained functions of several or
many parameters

The three functions ufn, ugr and uhess wrap corresponding user functions fn, gr, and hess so that
these functions can be executed safely (via try()) and also so parameter or function scaling can be
applied. The wrapper functions also allow for maximization of functions (via minimization of the
negative of the function) using the logical parameter maximize.

There are three test functions, fnchk, grchk, and hesschk, to allow the user function to be tested
for validity and correctness. However, no set of tests is exhaustive, and extensions and improve-
ments are welcome. The package numDeriv is used for generation of numerical approximations to
derivatives.

Details

Index:

axsearch Perform an axial search optimality check
bmchk Check bounds and masks for parameter constraints
bmstep Compute the maximum step along a search direction.
checksolver Checks if method is available in allmeth
ctrldefault Sets the default values of elements of the control() list
dispdefault To display default control settings
fnchk Test validity of user function
gHgen Compute gradient and Hessian as a given

set of parameters
gHgenb Compute gradient and Hessian as a given

set of parameters appying bounds and masks
grback Backward numerical gradient approximation
grcentral Central numerical gradient approximation
grchk Check that gradient function evaluation

matches numerical gradient
grfwd Forward numerical gradient approximation
grnd Gradient approximation using \code{numDeriv}
grpracma Gradient approximation using \code{pracma}
hesschk Check that Hessian function evaluation

matches numerical approximation
hjn A didactic example code of the Hooke and Jeeves algorithm
kktchk Check the Karush-Kuhn-Tucker optimality conditions
multistart Try a single method with multiple starting parameter sets
ncg Revised CG solver

4 optimx-package

nvm Revised Variable Metric solver
opm Wrapper that allows multiple minimizers to be applied to a

given objective function
optchk Check supplied objective function
optimr Wrapper that allows different (single) minimizers to be

applied to a given objective function using a common syntax
like that of optim()

optimx Wrapper that allows multiple minimizers to be applied to a
given objective function. Complexity of the code maked this
function difficult to maintain, and opm() is the suggested
replacement, but optimx() is retained for backward
compatibility.

optimx.check a component of optimx()
optimx-package a component of optimx()
optimx.run a component of optimx()
optimx.setup a component of optimx()
optsp An environment to hold some globally useful items

used by optimization programs. Created on loading package
with zzz.R

polyopt Allows sequential application of methods to a given problem.
proptimr compact output of optimr() result object
Rcgmin Conjugate gradients minimization
Rcgminb Bounds constrained conjugate gradients minimization
Rcgminu Unconstrained conjugate gradients minimization
Rtnmin-package Internal functions for the S.G.Nash truncated newton method
Rvmmin Variable metric minimization method
Rvmminb Bounds constrained variable metric minimization method
Rvmminu Unconstrained variable metric minimization method
scalechk Check scale of initial parameters and bounds
snewtm Demonstration Newton-Marquardt minimization method
snewton Demonstration safeguarded Newton minimization method
snewtonmb Bounds constrained safeguarded Newton method
tnbc Bounds constrained truncated Newton method
tn Unconstrained truncated Newton method

Author(s)

John C Nash <nashjc@uottawa.ca> and Ravi Varadhan <RVaradhan@jhmi.edu>

Maintainer: John C Nash <nashjc@uottawa.ca>

References

Nash, John C. and Varadhan, Ravi (2011) Unifying Optimization Algorithms to Aid Software Sys-
tem Users: optimx for R, Journal of Statistical Software, publication pending.

axsearch 5

axsearch Perform axial search around a supposed MINIMUM and provide di-
agnostics

Description

Nonlinear optimization problems often terminate at points in the parameter space that are not satis-
factory optima. This routine conducts an axial search, stepping forward and backward along each
parameter and computing the objective function. This allows us to compute the tilt and radius
of curvature or roc along that parameter axis.

axsearch assumes that one is MINIMIZING the function fn. If you are working with a maximiza-
tion, it is suggested that you write your own function that is to be minimized, that is, (-1)*(function
to be maximized). All discussion here is in terms of minimization.

Axial search may find parameters with a function value lower than that at the supposed minimum,
i.e., lower than fmin.

In this case axsearch exits immediately with the new function value and parameters. This can be
used to restart an optimizer, as in the optimx wrapper.

Usage

axsearch(par, fn=NULL, fmin=NULL, lower=NULL, upper=NULL, bdmsk=NULL,
control=list(), ...)

Arguments

par A numeric vector of values of the optimization function parameters that are at a
supposed minimum.

fn The user objective function

fmin The presumed value of the objective function at the parameters par. NOTE:
This is NOT cheched. Caution!. However, if fmin==NULL on call, axsearch
will compute the value.

lower A vector of lower bounds on the parameters.

upper A vector of upper bounds on the parameters.

bdmsk An indicator vector, having 1 for each parameter that is "free" or unconstrained,
and 0 for any parameter that is fixed or MASKED for the duration of the opti-
mization. Partly for historical reasons, we use the same array during the progress
of optimization as an indicator that a parameter is at a lower bound (bdmsk ele-
ment set to -3) or upper bound (-1).

control Algorithm controls as per ctrldefault. See details.

... Extra arguments for the user function.

6 axsearch

Details

The axial search MAY give a lower function value, in which case, one can restart an optimization.
However, it is left to the user to do this. Its primary use is in presenting some features of the function
surface in the tilt and radius of curvature measures returned. However, better measures should be
possible, and this function should be regarded as largely experimental.

Note: As of December 2021, the calling syntax has changed from axsearch(par, fn=NULL,
fmin=NULL, lower=NULL, upper=NULL, bdmsk=NULL, trace=0, ...)

In case any user has code employing the older function, it is to be found in inst/doc/replaced2021/axsearch2018.R.

The new syntax has trace replaced with control=list{}, where the defaults are found from the
function ctrldefault(). This routine uses three particular elements:

trace is 0 if no intermediate output is desired, non-zero otherwise.

bigval is a large number used to provide a value for the objective function when the parameters
are inadmissible.

reltest is used to test for equality of small numbers by comparing their sums with reltest.

grtesttol is a small quantity, but it is used when multiplied by reltest to give epst, the axial
step control. Each parameter is stepped by an amount epst*(abs(parameter_value)+epst).
Note that the author has never found it necessary to adjust these values from the defaults generated
by ctrldefault().

Value

A list with components:

bestfn The lowest (best) function value found during the axial search, else the original
fmin value. (This is actively set in that case.)

par The vector of parameters at the best function value.

details A data frame reporting the original parameters, the forward step and backward
step function values, the size of the step taken for a particular parameter, the tilt
and the roc (radius of curvature). Some elements will be NA if we find a lower
function value during the axial search.

Examples

#####################
require(optimx)
Simple bounds test for n=4
bt.f<-function(x){

sum(x*x)
}

bt.g<-function(x){
gg<-2.0*x

}

n<-4
lower<-rep(0,n)
upper<-lower # to get arrays set

bmchk 7

bdmsk<-rep(1,n)
bdmsk[(trunc(n/2)+1)]<-0
for (i in 1:n) {

lower[i]<-1.0*(i-1)*(n-1)/n
upper[i]<-1.0*i*(n+1)/n

}
xx<-0.5*(lower+upper)

cat("lower bounds:")
print(lower)
cat("start: ")
print(xx)
cat("upper bounds:")
print(upper)

abtrvm <- list() # ensure we have the structure

cat("Rvmmin \n\n")
Note: trace set to 0 below. Change as needed to view progress.

Following can be executed if package optimx available
abtrvm <- optimr(xx, bt.f, bt.g, lower=lower, upper=upper, method="Rvmmin",
control=list(trace=0))
Note: use lower=lower etc. because there is a missing hess= argument
print(abtrvm)

abtrvm$par <- c(0.00, 0.75, 1.50, 2.25)
abtrvm$value <- 7.875
cat("Axial search")
axabtrvm <- axsearch(abtrvm$par, fn=bt.f, fmin=abtrvm$value, lower, upper, bdmsk=NULL)
print(axabtrvm)

abtrvm1 <- optimr(xx, bt.f, bt.g, lower=lower, upper=upper, method="Rvmmin",
control=list(maxit=1, trace=0))

proptimr(abtrvm1)

abtrvm1$value <- 8.884958
abtrvm1$par <- c(0.625, 1.625, 2.625, 3.625)

cat("Axial search")
axabtrvm1 <- axsearch(abtrvm1$par, fn=bt.f, fmin=abtrvm1$value, lower, upper, bdmsk=NULL)
print(axabtrvm1)

cat("Do NOT try axsearch() with maximize\n")

bmchk Check bounds and masks for parameter constraints used in nonlinear
optimization

8 bmchk

Description

Nonlinear optimization problems often have explicit or implicit upper and lower bounds on the pa-
rameters of the function to be miminized or maximized. These are called bounds or box constraints.
Some of the parameters may be fixed for a given problem or for a temporary trial. These fixed, or
masked, paramters are held at one value during a specific ’run’ of the optimization.

It is possible that the bounds are inadmissible, that is, that at least one lower bound exceeds an upper
bound. In this case we set the flag admissible to FALSE.

Parameters that are outside the bounds are moved to the nearest bound and the flag parchanged is
set TRUE. However, we DO NOT change masked parameters, and they may be outside the bounds.
This is an implementation choice, since it may be useful to test objective functions at point outside
the bounds.

The package bmchk is essentially a test of the R function bmchk(), which is likely to be incorporated
within optimization codes.

Usage

bmchk(par, lower=NULL, upper=NULL, bdmsk=NULL, trace=0, offset=100, shift2bound=TRUE)

Arguments

par A numeric vector of starting values of the optimization function parameters.

lower A vector of lower bounds on the parameters.

upper A vector of upper bounds on the parameters.

bdmsk An indicator vector, having 1 for each parameter that is "free" or unconstrained,
and 0 for any parameter that is fixed or MASKED for the duration of the opti-
mization. Partly for historical reasons, we use the same array during the progress
of optimization as an indicator that a parameter is at a lower bound (bdmsk ele-
ment set to -3) or upper bound (-1).

trace An integer that controls whether diagnostic information is displayed. A positive
value displays information, 0 (default) does not.

offset If provided, is used to detect equality of numbers. That is, two values a and b
are taken as equal if a + offset is equal to b + offset. Default value is 100.
Note that in previous versions of this code a tolerance tol was used.

shift2bound If TRUE, non-masked paramters outside bounds are adjusted to the nearest
bound. We then set parchanged = TRUE which implies the original parame-
ters were infeasible.

Details

The bmchk function will check that the bounds exist and are admissible, that is, that there are no
lower bounds that exceed upper bounds.

There is a check if lower and upper bounds are very close together, in which case a mask is imposed
and maskadded is set TRUE. NOTE: it is generally a VERY BAD IDEA to have bounds close
together in optimization, but here we use a tolerance based on the double precision machine epsilon.
Thus it is not a good idea to rely on bmchk() to test if bounds constraints are well-posed.

bmchk 9

Value

A list with components:

bvec The vector of parameters, possibly adjusted to bounds. Parameters outside
bounds are adjusted to the nearest bound. We let n be the length of this vec-
tor.

bdmsk adjusted input masks

bchar a set of indicators that give information about the parameters, that is, if they are
out-of-bounds-low ("-"), at a lower bound ("L"), free ("F"), at an upper bound
("U"), out-of-bounds-high ("+"), masked (fixed) ("M"), of unknown character-
istics ("?""), or inadmissible ("!"").

lower (adjusted) lower bounds. If there are no lower bounds, a vector of values equal
to -Inf is substituted. Similarly, a single value is expanded to a complete vector.
If any upper and lower bounds are equal (as mediated by offset), we create a
mask.

upper (adjusted) upper bounds

nolower TRUE if no lower bounds, FALSE otherwise

noupper TRUE if no upper bounds, FALSE otherwise

bounds TRUE if there are any bounds, FALSE otherwise

admissible TRUE if bounds are admissible, FALSE otherwise This means no lower bound
exceeds an upper bound. That is the bounds themselves are sensible. This con-
dition has nothing to do with the starting parameters.

maskadded TRUE when a mask has been added because bounds are very close or equal,
FALSE otherwise. See the code for the implementation.

parchanged TRUE if parameters are changed by bounds, FALSE otherswise. Note that
parchanged = TRUE implies the input parameter values were infeasible, that
is, violated the bounds constraints.

feasible TRUE if parameters are within or on bounds, FALSE otherswise.

onbound TRUE if any parameter is on a bound, FALSE otherswise. Note that parchanged
= TRUE implies onbound = TRUE, but this is not used inside the function. This
output value may be important, for example, in using the optimization function
nmkb from package dfoptim.

Examples

#####################

cat("25-dimensional box constrained function\n")
flb <- function(x)
{ p <- length(x); sum(c(1, rep(4, p-1)) * (x - c(1, x[-p])^2)^2) }

start<-rep(2, 25)
cat("\n start:")
print(start)
lo<-rep(2,25)
cat("\n lo:")

10 bmstep

print(lo)
hi<-rep(4,25)
cat("\n hi:")
print(hi)
bt<-bmchk(start, lower=lo, upper=hi, trace=1)
print(bt)

bmstep Compute the maximum step along a search direction.

Description

Nonlinear optimization problems often have explicit or implicit upper and lower bounds on the pa-
rameters of the function to be miminized or maximized. These are called bounds or box constraints.
Some of the parameters may be fixed for a given problem or for a temporary trial. These fixed, or
masked, paramters are held at one value during a specific ’run’ of the optimization.

The bmstep() function computes the maximum step possible (which could be infinite) along a par-
ticular search direction from current parameters to bounds.

Usage

bmstep(par, srchdirn, lower=NULL, upper=NULL, bdmsk=NULL, trace=0)

Arguments

par A numeric vector of starting values of the optimization function parameters.

srchdirn A numeric vector giving the search direction.

lower A vector of lower bounds on the parameters.

upper A vector of upper bounds on the parameters.

bdmsk An indicator vector, having 1 for each parameter that is "free" or unconstrained,
and 0 for any parameter that is fixed or MASKED for the duration of the opti-
mization. Partly for historical reasons, we use the same array during the progress
of optimization as an indicator that a parameter is at a lower bound (bdmsk ele-
ment set to -3) or upper bound (-1).

trace An integer that controls whether diagnostic information is displayed. A positive
value displays information, 0 (default) does not.

Details

The bmstep function will compute and return (as a double or Inf) the maximum step to the bounds.

Value

A double precision value or Inf giving the maximum step to the bounds.

checksolver 11

Examples

#####################
xx <- c(1, 1)
lo <- c(0, 0)
up <- c(100, 40)
sdir <- c(4,1)
bm <- c(1,1) # both free
ans <- bmstep(xx, sdir, lo, up, bm, trace=1)
stepsize
print(ans)
distance
print(ans*sdir)
New parameters
print(xx+ans*sdir)

checksolver Test if requested solver is present

Description

Test if requested solver is present.

Usage

checksolver(method, allmeth, allpkg)
checkallsolvers()

Arguments

method Character string giving the name of the solver requested.

allmeth Character vector giving the names of the methods optimr can use.

allpkg Character vector giving the names of the packages where solvers are found.

Value

If the solver defined by character string in method is available, then checksolver returns this string,
else NULL.

checkallsolvers() returns a vector of strings that are the names of missing solvers, else NULL if
all solvers specified in allmeth are present where allmeth is returned from a call to ctrldefault(n)
where n is some integer.

12 coef

Examples

allmeth <- c("Rvmmin", "nlminb","ipopttest")
allpkg <- c("Rvmmin", "stats","ipoptr")

print(checksolver("nlminb", allmeth, allpkg))
If Rvmmin NOT available, get msg that PACKAGE not available.
print(checksolver("Rvmmin", allmeth, allpkg))
Get message that SOLVER not found
print(checksolver("notasolver", allmeth, allpkg))

coef Summarize opm object

Description

Summarize an "opm" object.

Usage

S3 method for class 'opm'
coef(object, ...)
S3 replacement method for class 'opm'

coef(x) <- value

Arguments

object Object returned by opm.

... Further arguments to be passed to the function. Currently not used.

x An opm object.

value Set parameters equal to this value.

Value

coef.opm returns the best parameters found by each method that returned such parameters. The
returned coefficients are in the form of a matrix with the rows named by the relevant methods and
the columns named according to parameter names provided by the user in the vector of starting
values, or else by "p1", "p2", ..., if names are not provided.

Examples

ans <- opm(fn = function(x) sum(x*x), par = 1:2, method="ALL", control=list(trace=0))
print(coef(ans))

ansx <- optimx(fn = function(x) sum(x*x), par = 1:2, control=list(all.methods=TRUE, trace=0))
print(coef(ansx))

ctrldefault 13

Not run:
proj <- function(x) x/sum(x)
f <- function(x) -prod(proj(x))
ans <- opm(1:2, f)
print(ans)
coef(ans) <- apply(coef(ans), 1, proj)
print(ans)

End(Not run)

ctrldefault set control defaults

Description

Set control defaults.

Usage

ctrldefault(npar)

dispdefault(ctrl)

Arguments

npar Number of parameters to optimize.

ctrl A list (likely generated by ‘ctrldefault‘) of default settings to ‘optimx‘.

Value

ctrldefault returns the default control settings for optimization tools.

dispdefault provides a compact display of the contents of a control settings list.

fnchk Run tests, where possible, on user objective function

Description

fnchk checks a user-provided R function, ffn.

Usage

fnchk(xpar, ffn, trace=0, ...)

14 fnchk

Arguments

xpar the (double) vector of parameters to the objective funcion

ffn a user-provided function to compute the objective function

trace set >0 to provide output from fnchk to the console, 0 otherwise

... optional arguments passed to the objective function.

Details

fnchk attempts to discover various errors in function setup in user-supplied functions primarily
intended for use in optimization calculations. There are always more conditions that could be
tested!

Value

The output is a list consisting of list(fval=fval, infeasible=infeasible, excode=excode, msg=msg)

fval The calculated value of the function at parameters xpar if the function can be
evaluated.

infeasible FALSE if the function can be evaluated, TRUE if not.

excode An exit code, which has a relationship to

msg A text string giving information about the result of the function check: Messages
and the corresponding values of excode are:

fnchk OK; excode = 0; infeasible = FALSE
Function returns INADMISSIBLE; excode = -1; infeasible = TRUE
Function returns a vector not a scalar; excode = -4; infeasible = TRUE
Function returns a list not a scalar; excode = -4; infeasible = TRUE
Function returns a matrix list not a scalar; excode = -4; infeasible = TRUE
Function returns an array not a scalar; excode = -4; infeasible = TRUE
Function returned not length 1, despite not vector, matrix or array; excode

= -4; infeasible = TRUE
Function returned non-numeric value; excode = 0; excode = -1; infeasible

= TRUE
Function returned Inf or NA (non-computable); excode = -1; infeasible

= TRUE

Author(s)

John C. Nash <nashjc@uottawa.ca>

Examples

Want to illustrate each case.
Ben Bolker idea for a function that is NOT scalar
rm(list=ls())
library(optimx)
sessionInfo()

gHgen 15

benbad<-function(x, y){
y may be provided with different structures
f<-(x-y)^2

} # very simple, but ...

y<-1:10
x<-c(1)
cat("fc01: test benbad() with y=1:10, x=c(1)\n")
fc01<-fnchk(x, benbad, trace=4, y)
print(fc01)

y<-as.vector(y)
cat("fc02: test benbad() with y=as.vector(1:10), x=c(1)\n")
fc02<-fnchk(x, benbad, trace=1, y)
print(fc02)

y<-as.matrix(y)
cat("fc03: test benbad() with y=as.matrix(1:10), x=c(1)\n")
fc03<-fnchk(x, benbad, trace=1, y)
print(fc03)

y<-as.array(y)
cat("fc04: test benbad() with y=as.array(1:10), x=c(1)\n")
fc04<-fnchk(x, benbad, trace=1, y)
print(fc04)

y<-"This is a string"
cat("test benbad() with y a string, x=c(1)\n")
fc05<-fnchk(x, benbad, trace=1, y)
print(fc05)

cat("fnchk with Rosenbrock\n")
fr <- function(x) { ## Rosenbrock Banana function

x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}
xtrad<-c(-1.2,1)
ros1<-fnchk(xtrad, fr, trace=1)
print(ros1)
npar<-2
opros<-list2env(list(fn=fr, gr=NULL, hess=NULL, MAXIMIZE=FALSE, PARSCALE=rep(1,npar), FNSCALE=1,

KFN=0, KGR=0, KHESS=0, dots=NULL))
uros1<-fnchk(xtrad, fr, trace=1)
print(uros1)

gHgen Generate gradient and Hessian for a function at given parameters.

16 gHgen

Description

gHgen is used to generate the gradient and Hessian of an objective function used for optimization. If
a user-provided gradient function gr is available it is used to compute the gradient, otherwise pack-
age numDeriv is used. If a user-provided Hessian function hess is available, it is used to compute
a Hessian. Otherwise, if gr is available, we use the function jacobian() from package numDeriv
to compute the Hessian. In both these cases we check for symmetry of the Hessian. Computational
Hessians are commonly NOT symmetric. If only the objective function fn is provided, then the
Hessian is approximated with the function hessian from package numDeriv which guarantees a
symmetric matrix.

Usage

gHgen(par, fn, gr=NULL, hess=NULL,
control=list(ktrace=0), ...)

Arguments

par Set of parameters, assumed to be at a minimum of the function fn.

fn Name of the objective function.

gr (Optional) function to compute the gradient of the objective function. If present,
we use the Jacobian of the gradient as the Hessian and avoid one layer of nu-
merical approximation to the Hessian.

hess (Optional) function to compute the Hessian of the objective function. This is
rarely available, but is included for completeness.

control A list of controls to the function. Currently asymptol (default of 1.0e-7 which
tests for asymmetry of Hessian approximation (see code for details of the test);
ktrace, a logical flag which, if TRUE, monitors the progress of gHgen (default
FALSE), and stoponerror, defaulting to FALSE to NOT stop when there is an
error or asymmetry of Hessian. Set TRUE to stop.

... Extra data needed to compute the function, gradient and Hessian.

Details

None

Value

ansout a list of four items,

gn The approximation to the gradient vector.

Hn The approximation to the Hessian matrix.

gradOK TRUE if the gradient has been computed acceptably. FALSE otherwise.

hessOK TRUE if the gradient has been computed acceptably and passes the symmetry test. FALSE
otherwise.

nbm Always 0. The number of active bounds and masks. Present to make function consistent with
gHgenb.

gHgen 17

Examples

genrose function code
genrose.f<- function(x, gs=NULL){ # objective function
One generalization of the Rosenbrock banana valley function (n parameters)
n <- length(x)

if(is.null(gs)) { gs=100.0 }
fval<-1.0 + sum (gs*(x[1:(n-1)]^2 - x[2:n])^2 + (x[2:n] - 1)^2)

return(fval)
}

genrose.g <- function(x, gs=NULL){
vectorized gradient for genrose.f
Ravi Varadhan 2009-04-03
n <- length(x)

if(is.null(gs)) { gs=100.0 }
gg <- as.vector(rep(0, n))
tn <- 2:n
tn1 <- tn - 1
z1 <- x[tn] - x[tn1]^2
z2 <- 1 - x[tn]
gg[tn] <- 2 * (gs * z1 - z2)
gg[tn1] <- gg[tn1] - 4 * gs * x[tn1] * z1
return(gg)

}

genrose.h <- function(x, gs=NULL) { ## compute Hessian
if(is.null(gs)) { gs=100.0 }

n <- length(x)
hh<-matrix(rep(0, n*n),n,n)
for (i in 2:n) {
z1<-x[i]-x[i-1]*x[i-1]

z2<-1.0-x[i]
hh[i,i]<-hh[i,i]+2.0*(gs+1.0)
hh[i-1,i-1]<-hh[i-1,i-1]-4.0*gs*z1-4.0*gs*x[i-1]*(-2.0*x[i-1])
hh[i,i-1]<-hh[i,i-1]-4.0*gs*x[i-1]
hh[i-1,i]<-hh[i-1,i]-4.0*gs*x[i-1]

}
return(hh)

}

trad<-c(-1.2,1)
ans100fgh<- gHgen(trad, genrose.f, gr=genrose.g, hess=genrose.h,

control=list(ktrace=1))
print(ans100fgh)
ans100fg<- gHgen(trad, genrose.f, gr=genrose.g,

control=list(ktrace=1))
print(ans100fg)
ans100f<- gHgen(trad, genrose.f, control=list(ktrace=1))
print(ans100f)
ans10fgh<- gHgen(trad, genrose.f, gr=genrose.g, hess=genrose.h,

control=list(ktrace=1), gs=10)
print(ans10fgh)

18 gHgenb

ans10fg<- gHgen(trad, genrose.f, gr=genrose.g,
control=list(ktrace=1), gs=10)

print(ans10fg)
ans10f<- gHgen(trad, genrose.f, control=list(ktrace=1), gs=10)
print(ans10f)

gHgenb Generate gradient and Hessian for a function at given parameters.

Description

gHgenb is used to generate the gradient and Hessian of an objective function used for optimization.
If a user-provided gradient function gr is available it is used to compute the gradient, otherwise
package numDeriv is used. If a user-provided Hessian function hess is available, it is used to
compute a Hessian. Otherwise, if gr is available, we use the function jacobian() from package
numDeriv to compute the Hessian. In both these cases we check for symmetry of the Hessian.
Computational Hessians are commonly NOT symmetric. If only the objective function fn is pro-
vided, then the Hessian is approximated with the function hessian from package numDeriv which
guarantees a symmetric matrix.

Usage

gHgenb(par, fn, gr=NULL, hess=NULL, bdmsk=NULL, lower=NULL, upper=NULL,
control=list(ktrace=0), ...)

Arguments

par Set of parameters, assumed to be at a minimum of the function fn.
fn Name of the objective function.
gr (Optional) function to compute the gradient of the objective function. If present,

we use the Jacobian of the gradient as the Hessian and avoid one layer of nu-
merical approximation to the Hessian.

hess (Optional) function to compute the Hessian of the objective function. This is
rarely available, but is included for completeness.

bdmsk An integer vector of the same length as par. When an element of this vector is
0, the corresponding parameter value is fixed (masked) during an optimization.
Non-zero values indicate a parameter is free (1), at a lower bound (-3) or at an
upper bound (-1), but this routine only uses 0 values.

lower Lower bounds for parameters in par.
upper Upper bounds for parameters in par.
control A list of controls to the function. Currently asymptol (default of 1.0e-7 which

tests for asymmetry of Hessian approximation (see code for details of the test);
ktrace, a logical flag which, if TRUE, monitors the progress of gHgenb (default
FALSE), and stoponerror, defaulting to FALSE to NOT stop when there is an
error or asymmetry of Hessian. Set TRUE to stop.

... Extra data needed to compute the function, gradient and Hessian.

gHgenb 19

Details

None

Value

ansout a list of four items,

gn The approximation to the gradient vector.

Hn The approximation to the Hessian matrix.

gradOK TRUE if the gradient has been computed acceptably. FALSE otherwise.

hessOK TRUE if the gradient has been computed acceptably and passes the symmetry test. FALSE
otherwise.

nbm The number of active bounds and masks.

Examples

require(numDeriv)
genrose function code
genrose.f<- function(x, gs=NULL){ # objective function
One generalization of the Rosenbrock banana valley function (n parameters)
n <- length(x)

if(is.null(gs)) { gs=100.0 }
fval<-1.0 + sum (gs*(x[1:(n-1)]^2 - x[2:n])^2 + (x[2:n] - 1)^2)

return(fval)
}

genrose.g <- function(x, gs=NULL){
vectorized gradient for genrose.f
Ravi Varadhan 2009-04-03
n <- length(x)

if(is.null(gs)) { gs=100.0 }
gg <- as.vector(rep(0, n))
tn <- 2:n
tn1 <- tn - 1
z1 <- x[tn] - x[tn1]^2
z2 <- 1 - x[tn]
gg[tn] <- 2 * (gs * z1 - z2)
gg[tn1] <- gg[tn1] - 4 * gs * x[tn1] * z1
return(gg)

}

genrose.h <- function(x, gs=NULL) { ## compute Hessian
if(is.null(gs)) { gs=100.0 }

n <- length(x)
hh<-matrix(rep(0, n*n),n,n)
for (i in 2:n) {
z1<-x[i]-x[i-1]*x[i-1]
z2<-1.0-x[i]

hh[i,i]<-hh[i,i]+2.0*(gs+1.0)
hh[i-1,i-1]<-hh[i-1,i-1]-4.0*gs*z1-4.0*gs*x[i-1]*(-2.0*x[i-1])

20 gHgenb

hh[i,i-1]<-hh[i,i-1]-4.0*gs*x[i-1]
hh[i-1,i]<-hh[i-1,i]-4.0*gs*x[i-1]

}
return(hh)

}

maxfn<-function(x, top=10) {
n<-length(x)

ss<-seq(1,n)
f<-top-(crossprod(x-ss))^2
f<-as.numeric(f)
return(f)

}

negmaxfn<-function(x) {
f<-(-1)*maxfn(x)
return(f)

}

parx<-rep(1,4)
lower<-rep(-10,4)
upper<-rep(10,4)
bdmsk<-c(1,1,0,1) # masked parameter 3
fval<-genrose.f(parx)
gval<-genrose.g(parx)
Ahess<-genrose.h(parx)
gennog<-gHgenb(parx,genrose.f)
cat("results of gHgenb for genrose without gradient code at ")
print(parx)
print(gennog)
cat("compare to g =")
print(gval)
cat("and Hess\n")
print(Ahess)
cat("\n\n")
geng<-gHgenb(parx,genrose.f,genrose.g)
cat("results of gHgenb for genrose at ")
print(parx)
print(gennog)
cat("compare to g =")
print(gval)
cat("and Hess\n")
print(Ahess)
cat("***\n")
parx<-rep(0.9,4)
fval<-genrose.f(parx)
gval<-genrose.g(parx)
Ahess<-genrose.h(parx)
gennog<-gHgenb(parx,genrose.f,control=list(ktrace=TRUE), gs=9.4)
cat("results of gHgenb with gs=",9.4," for genrose without gradient code at ")
print(parx)
print(gennog)

grback 21

cat("compare to g =")
print(gval)
cat("and Hess\n")
print(Ahess)
cat("\n\n")
geng<-gHgenb(parx,genrose.f,genrose.g, control=list(ktrace=TRUE))
cat("results of gHgenb for genrose at ")
print(parx)
print(gennog)
cat("compare to g =")
print(gval)
cat("and Hess\n")
print(Ahess)
gst<-5
cat("\n\nTest with full calling sequence and gs=",gst,"\n")
gengall<-gHgenb(parx,genrose.f,genrose.g,genrose.h, control=list(ktrace=TRUE),gs=gst)
print(gengall)

top<-25
x0<-rep(2,4)
cat("\n\nTest for maximization and top=",top,"\n")
cat("Gradient and Hessian will have sign inverted")
maxt<-gHgen(x0, maxfn, control=list(ktrace=TRUE), top=top)
print(maxt)

cat("test against negmaxfn\n")
gneg <- grad(negmaxfn, x0)
Hneg<-hessian(negmaxfn, x0)
gdiff<-max(abs(gneg-maxt$gn))/max(abs(maxt$gn))
Hdiff<-max(abs(Hneg-maxt$Hn))/max(abs(maxt$Hn))
explicitly change sign
gdiff<-max(abs(gneg-(-1)*maxt$gn))/max(abs(maxt$gn))
Hdiff<-max(abs(Hneg-(-1)*maxt$Hn))/max(abs(maxt$Hn))
cat("gdiff = ",gdiff," Hdiff=",Hdiff,"\n")

grback Backward difference numerical gradient approximation.

Description

grback computes the backward difference approximation to the gradient of user function userfn.

Usage

grback(par, userfn, fbase=NULL, env=optsp, ...)

22 grback

Arguments

par parameters to the user objective function userfn

userfn User-supplied objective function

fbase The value of the function at the parameters, else NULL. This is to save recom-
puting the function at this point.

env Environment for scratchpad items (like deps for approximation control in this
routine). Default optsp.

... optional arguments passed to the objective function.

Details

Package: grback
Depends: R (>= 2.6.1)
License: GPL Version 2.

Value

grback returns a single vector object df which approximates the gradient of userfn at the parameters
par. The approximation is controlled by a global value optderiveps that is set when the package
is attached.

Author(s)

John C. Nash

Examples

cat("Example of use of grback\n")

myfn<-function(xx, shift=100){
ii<-1:length(xx)
result<-shift+sum(xx^ii)

}

xx<-c(1,2,3,4)
ii<-1:length(xx)
print(xx)
gn<-grback(xx,myfn, shift=0)
print(gn)
ga<-ii*xx^(ii-1)
cat("compare to analytic gradient:\n")
print(ga)

cat("change the step parameter to 1e-4\n")
optsp$deps <- 1e-4

grcentral 23

gn2<-grback(xx,myfn, shift=0)
print(gn2)

grcentral Central difference numerical gradient approximation.

Description

grcentral computes the central difference approximation to the gradient of user function userfn.

Usage

grcentral(par, userfn, fbase=NULL, env=optsp, ...)

Arguments

par parameters to the user objective function userfn

userfn User-supplied objective function

fbase The value of the function at the parameters, else NULL. This is to save recom-
puting the function at this point.

env Environment for scratchpad items (like deps for approximation control in this
routine). Default optsp.

... optional arguments passed to the objective function.

Details

Package: grcentral
Depends: R (>= 2.6.1)
License: GPL Version 2.

Value

grcentral returns a single vector object df which approximates the gradient of userfn at the pa-
rameters par. The approximation is controlled by a global value optderiveps that is set when the
package is attached.

Author(s)

John C. Nash

24 grchk

Examples

cat("Example of use of grcentral\n")

myfn<-function(xx, shift=100){
ii<-1:length(xx)
result<-shift+sum(xx^ii)

}
xx<-c(1,2,3,4)
ii<-1:length(xx)
print(xx)
gn<-grcentral(xx,myfn, shift=0)
print(gn)
ga<-ii*xx^(ii-1)
cat("compare to\n")
print(ga)

grchk Run tests, where possible, on user objective function and (optionally)
gradient and hessian

Description

grchk checks a user-provided R function, ffn.

Usage

grchk(xpar, ffn, ggr, trace=0, testtol=(.Machine$double.eps)^(1/3), ...)

Arguments

xpar parameters to the user objective and gradient functions ffn and ggr

ffn User-supplied objective function

ggr User-supplied gradient function

trace set >0 to provide output from grchk to the console, 0 otherwise

testtol tolerance for equality tests

... optional arguments passed to the objective function.

Details

Package: grchk
Depends: R (>= 2.6.1)
License: GPL Version 2.

numDeriv is used to numerically approximate the gradient of function ffn and compare this to the
result of function ggr.

grchk 25

Value

grchk returns a single object gradOK which is TRUE if the differences between analytic and ap-
proximated gradient are small as measured by the tolerance testtol.

This has attributes "ga" and "gn" for the analytic and numerically approximated gradients, and
"maxdiff" for the maximum absolute difference between these vectors.

At the time of preparation, there are no checks for validity of the gradient code in ggr as in the
function fnchk.

Author(s)

John C. Nash

Examples

Would like examples of success and failure. What about "near misses"?
cat("Show how grchk works\n")
require(numDeriv)
require(optimx)

jones<-function(xx){
x<-xx[1]
y<-xx[2]
ff<-sin(x*x/2 - y*y/4)*cos(2*x-exp(y))
ff<- -ff

}

jonesg <- function(xx) {
x<-xx[1]
y<-xx[2]
gx <- cos(x * x/2 - y * y/4) * ((x + x)/2) * cos(2 * x - exp(y)) -
sin(x * x/2 - y * y/4) * (sin(2 * x - exp(y)) * 2)

gy <- sin(x * x/2 - y * y/4) * (sin(2 * x - exp(y)) * exp(y)) - cos(x *
x/2 - y * y/4) * ((y + y)/4) * cos(2 * x - exp(y))

gg <- - c(gx, gy)
}

jonesg2 <- function(xx) {
gx <- 1
gy <- 2
gg <- - c(gx, gy)

}

xx <- c(1, 2)

gcans <- grchk(xx, jones, jonesg, trace=1, testtol=(.Machine$double.eps)^(1/3))
gcans

gcans2 <- grchk(xx, jones, jonesg2, trace=1, testtol=(.Machine$double.eps)^(1/3))
gcans2

26 grfwd

grfwd Forward difference numerical gradient approximation.

Description

grfwd computes the forward difference approximation to the gradient of user function userfn.

Usage

grfwd(par, userfn, fbase=NULL, env=optsp, ...)

Arguments

par parameters to the user objective function userfn

userfn User-supplied objective function

fbase The value of the function at the parameters, else NULL. This is to save recom-
puting the function at this point.

env Environment for scratchpad items (like deps for approximation control in this
routine). Default optsp.

... optional arguments passed to the objective function.

Details

Package: grfwd
Depends: R (>= 2.6.1)
License: GPL Version 2.

Value

grfwd returns a single vector object df which approximates the gradient of userfn at the parameters
par. The approximation is controlled by a global value optderiveps that is set when the package
is attached.

Author(s)

John C. Nash

grnd 27

Examples

cat("Example of use of grfwd\n")

myfn<-function(xx, shift=100){
ii<-1:length(xx)
result<-shift+sum(xx^ii)

}
xx<-c(1,2,3,4)
ii<-1:length(xx)
print(xx)
gn<-grfwd(xx,myfn, shift=0)
print(gn)
ga<-ii*xx^(ii-1)
cat("compare to\n")
print(ga)

grnd A reorganization of the call to numDeriv grad() function.

Description

Provides a wrapper for the numDeriv approximation to the gradient of a user supplied objective
function userfn.

Usage

grnd(par, userfn, ...)

Arguments

par A vector of parameters to the user-supplied function fn

userfn A user-supplied function

... Other data needed to evaluate the user function.

Details

The Richardson method is used in this routine.

Value

grnd returns an approximation to the gradient of the function userfn

28 grpracma

Examples

cat("Example of use of grnd\n")
require(numDeriv)
myfn<-function(xx, shift=100){

ii<-1:length(xx)
result<-shift+sum(xx^ii)

}
xx<-c(1,2,3,4)
ii<-1:length(xx)
print(xx)
gn<-grnd(xx,myfn, shift=0)
print(gn)
ga<-ii*xx^(ii-1)
cat("compare to\n")
print(ga)

grpracma A reorganization of the call to numDeriv grad() function.

Description

Provides a wrapper for the numDeriv approximation to the gradient of a user supplied objective
function userfn.

Usage

grpracma(par, userfn, ...)

Arguments

par A vector of parameters to the user-supplied function fn

userfn A user-supplied function

... Other data needed to evaluate the user function.

Details

The Richardson method is used in this routine.

Value

grpracma returns an approximation to the gradient of the function userfn

hesschk 29

Examples

cat("Example of use of grpracma\n")
require(numDeriv)
myfn<-function(xx, shift=100){

ii<-1:length(xx)
result<-shift+sum(xx^ii)

}
xx<-c(1,2,3,4)
ii<-1:length(xx)
print(xx)
gn<-grpracma(xx,myfn, shift=0)
print(gn)
ga<-ii*xx^(ii-1)
cat("compare to\n")
print(ga)

hesschk Run tests, where possible, on user objective function and (optionally)
gradient and hessian

Description

hesschk checks a user-provided R function, ffn.

Usage

hesschk(xpar, ffn, ggr, hhess, trace=0, testtol=(.Machine$double.eps)^(1/3), ...)

Arguments

xpar parameters to the user objective and gradient functions ffn and ggr

ffn User-supplied objective function

ggr User-supplied gradient function

hhess User-supplied Hessian function

trace set >0 to provide output from hesschk to the console, 0 otherwise

testtol tolerance for equality tests

... optional arguments passed to the objective function.

Details

Package: hesschk
Depends: R (>= 2.6.1)
License: GPL Version 2.

30 hesschk

numDeriv is used to compute a numerical approximation to the Hessian matrix. If there is no
analytic gradient, then the hessian() function from numDeriv is applied to the user function ffn.
Otherwise, the jacobian() function of numDeriv is applied to the ggr function so that only one
level of differencing is used.

Value

The function returns a single object hessOK which is TRUE if the analytic Hessian code returns
a Hessian matrix that is "close" to the numerical approximation obtained via numDeriv; FALSE
otherwise.

hessOK is returned with the following attributes:

"nullhess" Set TRUE if the user does not supply a function to compute the Hessian.

"asym" Set TRUE if the Hessian does not satisfy symmetry conditions to within a tolerance. See
the hesschk for details.

"ha" The analytic Hessian computed at paramters xpar using hhess.

"hn" The numerical approximation to the Hessian computed at paramters xpar.

"msg" A text comment on the outcome of the tests.

Author(s)

John C. Nash

Examples

genrose function code
genrose.f<- function(x, gs=NULL){ # objective function
One generalization of the Rosenbrock banana valley function (n parameters)
n <- length(x)

if(is.null(gs)) { gs=100.0 }
fval<-1.0 + sum (gs*(x[1:(n-1)]^2 - x[2:n])^2 + (x[2:n] - 1)^2)

return(fval)
}

genrose.g <- function(x, gs=NULL){
vectorized gradient for genrose.f
Ravi Varadhan 2009-04-03
n <- length(x)

if(is.null(gs)) { gs=100.0 }
gg <- as.vector(rep(0, n))
tn <- 2:n
tn1 <- tn - 1
z1 <- x[tn] - x[tn1]^2
z2 <- 1 - x[tn]
gg[tn] <- 2 * (gs * z1 - z2)
gg[tn1] <- gg[tn1] - 4 * gs * x[tn1] * z1
return(gg)

}

genrose.h <- function(x, gs=NULL) { ## compute Hessian

hjn 31

if(is.null(gs)) { gs=100.0 }
n <- length(x)
hh<-matrix(rep(0, n*n),n,n)
for (i in 2:n) {
z1<-x[i]-x[i-1]*x[i-1]

z2<-1.0-x[i]
hh[i,i]<-hh[i,i]+2.0*(gs+1.0)
hh[i-1,i-1]<-hh[i-1,i-1]-4.0*gs*z1-4.0*gs*x[i-1]*(-2.0*x[i-1])
hh[i,i-1]<-hh[i,i-1]-4.0*gs*x[i-1]
hh[i-1,i]<-hh[i-1,i]-4.0*gs*x[i-1]

}
return(hh)

}

trad<-c(-1.2,1)
ans100<-hesschk(trad, genrose.f, genrose.g, genrose.h, trace=1)
print(ans100)
ans10<-hesschk(trad, genrose.f, genrose.g, genrose.h, trace=1, gs=10)
print(ans10)

hjn Compact R Implementation of Hooke and Jeeves Pattern Search Opti-
mization

Description

The purpose of hjn is to minimize an unconstrained or bounds (box) and mask constrained function
of several parameters by a Hooke and Jeeves pattern search. This didactic code is entirely in R to
allow users to explore and understand the method. It also allows bounds (or box) constraints and
masks (equality constraints) to be imposed on parameters.

Usage

hjn(par, fn, lower=-Inf, upper=Inf, bdmsk=NULL, control = list(trace=0), ...)

Arguments

par A numeric vector of starting estimates.
fn A function that returns the value of the objective at the supplied set of parameters

par using auxiliary data in The first argument of fn must be par.
lower A vector of lower bounds on the parameters.
upper A vector of upper bounds on the parameters.
bdmsk An indicator vector, having 1 for each parameter that is "free" or unconstrained,

and 0 for any parameter that is fixed or MASKED for the duration of the opti-
mization.

control An optional list of control settings.
... Further arguments to be passed to fn.

32 hjn

Details

Functions fn must return a numeric value.

The control argument is a list.

maxfeval A limit on the number of function evaluations used in the search.

trace Set 0 (default) for no output, >0 for trace output (larger values imply more output).

eps Tolerance used to calculate numerical gradients. Default is 1.0E-7. See source code for hjn
for details of application.

dowarn = TRUE if we want warnings generated by optimx. Default is TRUE.

tol Tolerance used in testing the size of the pattern search step.

Note that the control maximize should NOT be used.

Value

A list with components:

par The best set of parameters found.

value The value of the objective at the best set of parameters found.

counts A two-element integer vector giving the number of calls to ’fn’ and ’gr’ respec-
tively. This excludes those calls needed to compute the Hessian, if requested,
and any calls to ’fn’ to compute a finite-difference approximation to the gradient.

convergence An integer code. ’0’ indicates successful convergence. ’1’ indicates that the
function evaluation count ’maxfeval’ was reached.

message A character string giving any additional information returned by the optimizer,
or ’NULL’.

References

Nash JC (1979). Compact Numerical Methods for Computers: Linear Algebra and Function Min-
imisation. Adam Hilger, Bristol. Second Edition, 1990, Bristol: Institute of Physics Publications.

See Also

optim

Examples

#####################
Rosenbrock Banana function
fr <- function(x) {

x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}

ansrosenbrock0 <- hjn(fn=fr, par=c(1,2), control=list(maxfeval=2000, trace=0))
print(ansrosenbrock0) # use print to allow copy to separate file that

kktchk 33

can be called using source()
#####################
genrose.f<- function(x, gs=NULL){ # objective function
One generalization of the Rosenbrock banana valley function (n parameters)
n <- length(x)

if(is.null(gs)) { gs=100.0 }
fval<-1.0 + sum (gs*(x[1:(n-1)]^2 - x[2:n])^2 + (x[2:n] - 1)^2)

return(fval)
}

xx<-rep(pi,10)
lower<-NULL
upper<-NULL
bdmsk<-NULL

cat("timings B vs U\n")
lo<-rep(-100,10)
up<-rep(100,10)
bdmsk<-rep(1,10)
tb<-system.time(ab<-hjn(xx,genrose.f, lower=lo, upper=up,

bdmsk=bdmsk, control=list(trace=0, maxfeval=2000)))[1]
tu<-system.time(au<-hjn(xx,genrose.f, control=list(maxfeval=2000, trace=0)))[1]
cat("times U=",tu," B=",tb,"\n")
cat("solution hjnu\n")
print(au)
cat("solution hjnb\n")
print(ab)
cat("diff fu-fb=",au$value-ab$value,"\n")
cat("max abs parameter diff = ", max(abs(au$par-ab$par)),"\n")

######### One dimension test
sqtst<-function(xx) {

res<-sum((xx-2)*(xx-2))
}

nn<-1
startx<-rep(0,nn)
onepar<-hjn(startx,sqtst,control=list(trace=1))
print(onepar)

kktchk Check Kuhn Karush Tucker conditions for a supposed function mini-
mum

Description

Provide a check on Kuhn-Karush-Tucker conditions based on quantities already computed. Some
of these used only for reporting.

34 kktchk

Usage

kktchk(par, fn, gr, hess=NULL, upper=NULL, lower=NULL,
maximize=FALSE, control=list(dowarn=TRUE), ...)

Arguments

par A vector of values for the parameters which are supposedly optimal.

fn The objective function

gr The gradient function

hess The Hessian function

upper Upper bounds on the parameters

lower Lower bounds on the parameters

maximize Logical TRUE if function is being maximized. Default FALSE.

control A list of controls for the function

... The dot arguments needed for evaluating the function and gradient and hessian

Details

kktchk computes the gradient and Hessian measures for BOTH unconstrained and bounds (and
masks) constrained parameters, but the kkt measures are evaluated only for the constrained case.

Note that evaluated Hessians are often not symmetric, and many, possibly most, examples will fail
the is.Symmetric() function. In such cases, the check on the Hessian uses the mean of the Hessian
and its transpose.

Value

The output is a list consisting of

gmax The absolute value of the largest gradient component in magnitude.

evratio The ratio of the smallest to largest Hessian eigenvalue. Note that this may be
negative.

kkt1 A logical value that is TRUE if we consider the first (i.e., gradient) KKT con-
dition to be satisfied. WARNING: The decision is dependent on tolerances and
scaling that may be inappropriate for some problems.

kkt2 A logical value that is TRUE if we consider the second (i.e., positive definite
Hessian) KKT condition to be satisfied. WARNING: The decision is dependent
on tolerances and scaling that may be inappropriate for some problems.

hev The calculated hessian eigenvalues, sorted largest to smallest. Sorting is a prop-
erty of the eigen() function.

ngatend The computed (unconstrained) gradient at the solution parameters.

nnatend The computed (unconstrained) hessian at the solution parameters.

See Also

optim

multistart 35

Examples

cat("Show how kktc works\n")

require(optimx)

jones<-function(xx){
x<-xx[1]
y<-xx[2]
ff<-sin(x*x/2 - y*y/4)*cos(2*x-exp(y))
ff<- -ff

}

jonesg <- function(xx) {
x<-xx[1]
y<-xx[2]
gx <- cos(x * x/2 - y * y/4) * ((x + x)/2) * cos(2 * x - exp(y)) -
sin(x * x/2 - y * y/4) * (sin(2 * x - exp(y)) * 2)

gy <- sin(x * x/2 - y * y/4) * (sin(2 * x - exp(y)) * exp(y)) - cos(x *
x/2 - y * y/4) * ((y + y)/4) * cos(2 * x - exp(y))

gg <- - c(gx, gy)
}

ans <- list() # to ensure structure available
If optimx package available, the following can be run.
xx<-0.5*c(pi,pi)
ans <- optimr(xx, jones, jonesg, method="Rvmmin")
ans

ans$par <- c(3.154083, -3.689620)

2023-8-23 need dowarn specified or get error
Note: may want to set control=list(dowarn=TRUE)
kkans <- kktchk(ans$par, jones, jonesg)
kkans

multistart General-purpose optimization - multiple starts

Description

Multiple initial parameter wrapper function that calls other R tools for optimization, including the
existing optimr() function.

Usage

multistart(parmat, fn, gr=NULL, lower=-Inf, upper=Inf,

36 multistart

method=NULL, hessian=FALSE,
control=list(),
...)

Arguments

parmat a matrix of which each row is a set of initial values for the parameters for which
optimal values are to be found. Names on the elements of this vector are pre-
served and used in the results data frame.

fn A function to be minimized (or maximized), with first argument the vector of
parameters over which minimization is to take place. It should return a scalar
result.

gr A function to return (as a vector) the gradient for those methods that can use this
information.
If ’gr’ is NULL, a finite-difference approximation will be used. An open ques-
tion concerns whether the SAME approximation code used for all methods, or
whether there are differences that could/should be examined?

lower, upper Bounds on the variables for methods such as "L-BFGS-B" that can handle box
(or bounds) constraints.

method A character string giving the name of the optimization method to be applied.
See the list allmeth in file ctrldefault.R which is part of this package.

hessian A logical control that if TRUE forces the computation of an approximation to
the Hessian at the final set of parameters. If FALSE (default), the hessian is
calculated if needed to provide the KKT optimality tests (see kkt in ‘Details’
for the control list). This setting is provided primarily for compatibility with
optim().

control A list of control parameters. See ‘Details’.

... For optimx further arguments to be passed to fn and gr; otherwise, further
arguments are not used.

Details

Note that arguments after ... must be matched exactly.

See optimr() for other details.

Value

An array with one row per set of starting parameters. Each row contains:

par The best set of parameters found.

value The value of ‘fn’ corresponding to ‘par’.

counts A two-element integer vector giving the number of calls to ‘fn’ and ‘gr’ respec-
tively. This excludes those calls needed to compute the Hessian, if requested,
and any calls to ‘fn’ to compute a finite-difference approximation to the gradient.

convergence An integer code. ‘0’ indicates successful completion

opm 37

message A character string giving any additional information returned by the optimizer,
or ‘NULL’.

hessian Always NULL for this routine.

Source

See the manual pages for optim() and the packages the DESCRIPTION suggests.

Examples

fnR <- function (x, gs=100.0)
{

n <- length(x)
x1 <- x[2:n]
x2 <- x[1:(n - 1)]
sum(gs * (x1 - x2^2)^2 + (1 - x2)^2)

}
grR <- function (x, gs=100.0)
{

n <- length(x)
g <- rep(NA, n)
g[1] <- 2 * (x[1] - 1) + 4*gs * x[1] * (x[1]^2 - x[2])
if (n > 2) {

ii <- 2:(n - 1)
g[ii] <- 2 * (x[ii] - 1) + 4 * gs * x[ii] * (x[ii]^2 - x[ii +

1]) + 2 * gs * (x[ii] - x[ii - 1]^2)
}
g[n] <- 2 * gs * (x[n] - x[n - 1]^2)
g

}

pm <- rbind(rep(1,4), rep(pi, 4), rep(-2,4), rep(0,4), rep(20,4))
pm <- as.matrix(pm)
cat("multistart matrix:\n")
print(pm)

ans <- multistart(pm, fnR, grR, method="Rvmmin", control=list(trace=0))
ans

opm General-purpose optimization

Description

General-purpose optimization wrapper function that calls multiple other R tools for optimization,
including the existing optim() function tools.

Because SANN does not return a meaningful convergence code (conv), opm() does not call the
SANN method, but it can be invoked in optimr().

38 opm

There is a pseudo-method "ALL" that runs all available methods. Note that this is upper-case. This
function is a replacement for optimx() from the optimx package. opm() calls the optimr() function
for each solver in the method list.

Usage

opm(par, fn, gr=NULL, hess=NULL, lower=-Inf, upper=Inf,
method=c("Nelder-Mead","BFGS"), hessian=FALSE,
control=list(),
...)

Arguments

par a vector of initial values for the parameters for which optimal values are to be
found. Names on the elements of this vector are preserved and used in the results
data frame.

fn A function to be minimized (or maximized), with a first argument the vector of
parameters over which minimization is to take place. It should return a scalar
result.

gr A function to return (as a vector) the gradient for those methods that can use this
information.
If ’gr’ is NULL, whatever default actions are supplied by the methods specified
will be used. However, some methods REQUIRE a gradient function, so will
fail in this case. opm() will generally return with convergence set to 9998 for
such methods.
If ’gr’ is a character string, this character string will be taken to be the name of
an available gradient approximation function. Examples are "grfwd", "grback",
"grcentral" and "grnd", with the last name referring to the default method of
package numDeriv.

hess A function to return (as a symmetric matrix) the Hessian of the objective func-
tion for those methods that can use this information.

lower, upper Bounds on the variables for methods such as "L-BFGS-B" that can handle box
(or bounds) constraints. These are vectors.

method A vector of the methods to be used, each as a character string. Note that this is
an important change from optim() that allows just one method to be specified.
See ‘Details’. If method has just one element, "ALL" (capitalized), all available
and appropriate methods will be tried.

hessian A logical control that if TRUE forces the computation of an approximation to
the Hessian at the final set of parameters. If FALSE (default), the hessian is
calculated if needed to provide the KKT optimality tests (see kkt in ‘Details’
for the control list). This setting is provided primarily for compatibility with
optim().

control A list of control parameters. See ‘Details’. There is a spreadsheet /inst/doc/optcontrol.xls
that is an ongoing attempt to document the different controls used in the various
methods.

... For optimx further arguments to be passed to fn and gr; otherwise, further
arguments are not used.

opm 39

Details

Note that arguments after ... must be matched exactly.

For details of how opm() calls the methods, see the documentation and code for optimr(). The
documentation and code for individual methods may also be useful. Note that some simplification
of the calls may have been necessary, for example, to provide reasonable default values for method
controls that are consistent across several methods, though this is not always possible to guarantee.
The documentation for optimr and the source code of the quite simple routine ctrldefault.R may
be useful.

Some of the commonly useful elements of the control list are:

trace Non-negative integer. If positive, tracing information on the progress of the optimization
is produced. Higher values may produce more tracing information: for method "L-BFGS-B"
there are six levels of tracing. trace = 0 gives no output (To understand exactly what these do
see the source code: higher levels give more detail.)

maxfeval For methods that can use this control, a limit on the number of function evaluations.
This control is simply passed through. It is not checked by opm.

maxit For methods that can use this control, a limit on the number of gradient evaluations or major
iterations.

fnscale An overall scaling to be applied to the value of fn and gr during optimization. If negative,
turns the problem into a maximization problem. Optimization is performed on fn(par)/fnscale.
For methods from the set in optim(). Note potential conflicts with the control maximize.

parscale A vector of scaling values for the parameters. Optimization is performed on par/parscale
and these should be comparable in the sense that a unit change in any element produces about
a unit change in the scaled value.For optim.

save.failures = TRUE (default) if we wish to keep "answers" from runs where the method does
not return convergence==0. FALSE otherwise.

maximize = TRUE if we want to maximize rather than minimize a function. (Default FALSE).
Methods nlm, nlminb, ucminf cannot maximize a function, so the user must explicitly min-
imize and carry out the adjustment externally. However, there is a check to avoid usage of
these codes when maximize is TRUE. See fnscale below for the method used in optim that
we deprecate.

all.methods = TRUE if we want to use all available (and suitable) methods. This is equivalent to
setting method="ALL"

kkt =FALSE if we do NOT want to test the Kuhn, Karush, Tucker optimality conditions. The
default is generally TRUE. However, because the Hessian computation may be very slow, we
set kkt to be FALSE if there are more than than 50 parameters when the gradient function
gr is not provided, and more than 500 parameters when such a function is specified. We
return logical values KKT1 and KKT2 TRUE if first and second order conditions are satisfied
approximately. Note, however, that the tests are sensitive to scaling, and users may need to
perform additional verification. If hessian is TRUE, this overrides control kkt.

all.methods = TRUE if we want to use all available (and suitable) methods.

kkttol = value to use to check for small gradient and negative Hessian eigenvalues. Default =
.Machine$double.eps^(1/3)

kkt2tol = Tolerance for eigenvalue ratio in KKT test of positive definite Hessian. Default same as
for kkttol

40 opm

dowarn = FALSE if we want to suppress warnings generated by opm() or optimr(). Default is
TRUE.

badval = The value to set for the function value when try(fn()) fails. The value is then a signal
of failure when execution continues with other methods. It may also, in non-standard usage,
be helpful in heuristic search methods like "Nelder-Mead" to avoid parameter regions that
are unwanted or inadmissible. It is inappropriate for gradient methods. Default is (0.5)*.Ma-
chine$double.xmax

There may be control elements that apply only to some of the methods. Using these may or may
not "work" with opm(), and errors may occur with methods for which the controls have no meaning.
However, it should be possible to call the underlying optimr() function with these method-specific
controls.

Any names given to par will be copied to the vectors passed to fn and gr. Note that no other
attributes of par are copied over. (We have not verified this as at 2009-07-29.)

Value

If there are npar parameters, then the result is a dataframe having one row for each method for
which results are reported, using the method as the row name, with columns

par_1, .., par_npar, value, fevals, gevals, niter, convergence, kkt1, kkt2, xtimes

where

par_1 ..

par_npar The best set of parameters found.

value The value of fn corresponding to par.

fevals The number of calls to fn. NOT reported for method lbfgs.

gevals The number of calls to gr. This excludes those calls needed to compute the Hessian, if
requested, and any calls to fn to compute a finite-difference approximation to the gradient.
NOT reported for method lbfgs.

convergence An integer code. 0 indicates successful convergence. Various methods may or may
not return sufficient information to allow all the codes to be specified. An incomplete list of
codes includes

1 indicates that the iteration limit maxit had been reached.
20 indicates that the initial set of parameters is inadmissible, that is, that the function cannot

be computed or returns an infinite, NULL, or NA value.
21 indicates that an intermediate set of parameters is inadmissible.
10 indicates degeneracy of the Nelder–Mead simplex.
51 indicates a warning from the "L-BFGS-B" method; see component message for further

details.
52 indicates an error from the "L-BFGS-B" method; see component message for further de-

tails.
9998 indicates that the method has been called with a NULL ’gr’ function, and the method

requires that such a function be supplied.
9999 indicates the method has failed.

kkt1 A logical value returned TRUE if the solution reported has a “small” gradient.

opm 41

kkt2 A logical value returned TRUE if the solution reported appears to have a positive-definite
Hessian.

xtimes The reported execution time of the calculations for the particular method.

The attribute "details" to the returned answer object contains information, if computed, on the gradi-
ent (ngatend) and Hessian matrix (nhatend) at the supposed optimum, along with the eigenvalues
of the Hessian (hev), as well as the message, if any, returned by the computation for each method,
which is included for each row of the details. If the returned object from optimx() is ans, this is
accessed via the construct attr(ans, "details")

This object is a matrix based on a list so that if ans is the output of optimx then attr(ans, "de-
tails")[1,] gives the first row and attr(ans,"details")["Nelder-Mead",] gives the Nelder-Mead row.
There is one row for each method that has been successful or that has been forcibly saved by
save.failures=TRUE.

There are also attributes

maximize to indicate we have been maximizing the objective

npar to provide the number of parameters, thereby facilitating easy extraction of the parameters
from the results data frame

follow.on to indicate that the results have been computed sequentially, using the order provided by
the user, with the best parameters from one method used to start the next. There is an example
(ans9) in the script ox.R in the demo directory of the package.

Note

Most methods in optimx will work with one-dimensional pars, but such use is NOT recommended.
Use optimize or other one-dimensional methods instead.

There are a series of demos available. Once the package is loaded (via require(optimx) or
library(optimx), you may see available demos via

demo(package="optimx")

The demo ’brown_test’ may be run with the command demo(brown_test, package="optimx")

The package source contains several functions that are not exported in the NAMESPACE. These
are

optimx.setup() which establishes the controls for a given run;

optimx.check() which performs bounds and gradient checks on the supplied parameters and
functions;

optimx.run() which actually performs the optimization and post-solution computations;

scalechk() which actually carries out a check on the relative scaling of the input parameters.

Knowledgeable users may take advantage of these functions if they are carrying out production
calculations where the setup and checks could be run once.

Source

See the manual pages for optim() and the packages the DESCRIPTION suggests.

42 opm

References

See the manual pages for optim() and the packages the DESCRIPTION suggests.

Nash JC, and Varadhan R (2011). Unifying Optimization Algorithms to Aid Software System
Users: optimx for R., Journal of Statistical Software, 43(9), 1-14., URL http://www.jstatsoft.org/v43/i09/.

Nash JC (2014). On Best Practice Optimization Methods in R., Journal of Statistical Software,
60(2), 1-14., URL http://www.jstatsoft.org/v60/i02/.

See Also

spg, nlm, nlminb, bobyqa, ucminf, nmkb, hjkb. optimize for one-dimensional minimization;
constrOptim or spg for linearly constrained optimization.

Examples

require(graphics)
cat("Note possible demo(ox) for extended examples\n")

Show multiple outputs of optimx using all.methods
genrose function code
genrose.f<- function(x, gs=NULL){ # objective function
One generalization of the Rosenbrock banana valley function (n parameters)
n <- length(x)

if(is.null(gs)) { gs=100.0 }
fval<-1.0 + sum (gs*(x[1:(n-1)]^2 - x[2:n])^2 + (x[2:n] - 1)^2)

return(fval)
}

genrose.g <- function(x, gs=NULL){
vectorized gradient for genrose.f
Ravi Varadhan 2009-04-03
n <- length(x)

if(is.null(gs)) { gs=100.0 }
gg <- as.vector(rep(0, n))
tn <- 2:n
tn1 <- tn - 1
z1 <- x[tn] - x[tn1]^2
z2 <- 1 - x[tn]
gg[tn] <- 2 * (gs * z1 - z2)
gg[tn1] <- gg[tn1] - 4 * gs * x[tn1] * z1
return(gg)

}

genrose.h <- function(x, gs=NULL) { ## compute Hessian
if(is.null(gs)) { gs=100.0 }

n <- length(x)
hh<-matrix(rep(0, n*n),n,n)
for (i in 2:n) {
z1<-x[i]-x[i-1]*x[i-1]
z2<-1.0-x[i]

hh[i,i]<-hh[i,i]+2.0*(gs+1.0)

opm2optimr 43

hh[i-1,i-1]<-hh[i-1,i-1]-4.0*gs*z1-4.0*gs*x[i-1]*(-2.0*x[i-1])
hh[i,i-1]<-hh[i,i-1]-4.0*gs*x[i-1]
hh[i-1,i]<-hh[i-1,i]-4.0*gs*x[i-1]

}
return(hh)

}

startx<-4*seq(1:10)/3.
ans8<-opm(startx,fn=genrose.f,gr=genrose.g, hess=genrose.h,

method="ALL", control=list(save.failures=TRUE, trace=0), gs=10)
Set trace=1 for output of individual solvers
ans8
ans8[, "gevals"]
ans8["spg",]
summary(ans8, par.select = 1:3)
summary(ans8, order = value)[1,] # show best value
head(summary(ans8, order = value)) # best few
head(summary(ans8, order = "value")) # best few -- alternative syntax

order by value. Within those values the same to 3 decimals order by fevals.
summary(ans8, order = list(round(value, 3), fevals), par.select = FALSE)
summary(ans8, order = "list(round(value, 3), fevals)", par.select = FALSE)

summary(ans8, order = rownames, par.select = FALSE) # order by method name
summary(ans8, order = "rownames", par.select = FALSE) # same

summary(ans8, order = NULL, par.select = FALSE) # use input order
summary(ans8, par.select = FALSE) # same

opm2optimr Extract optim() solution for one method of opm() result

Description

A function that attempts to extract a solution found for one of the multiple solvers used to obtain
results of minimization or maximinzation using the opm() multi-solver wrapper.

Usage

opm2optimr(opmobj, rid)

Arguments

opmobj the object returned by opm() from trying to solve an optimization problem with
multiple solvers

rid The identifier of the solver for which the solution should be extracted. This
may be a "row ID" in the form of an integer or else a character string for the
corresponding solver.

44 optchk

Details

We do not extract the true "message" for a method.

Value

A list of the following items:

par The best set of parameters found.

value The value of fn corresponding to par.

counts A two-element integer vector giving the number of calls to fn and gr respectively. This
excludes those calls needed to compute the Hessian even though the opm() result will have
these counts

convergence An integer code. 0 indicates successful completion

message A character string which for optim() or optimr() may give additional information returned
by the optimizer, or NULL. Here will be "Result of conversion from opm() result"

Examples

fr <- function(x) { ## Rosenbrock Banana function
x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}
grr <- function(x) { ## Gradient of 'fr'

x1 <- x[1]
x2 <- x[2]
c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1),

200 * (x2 - x1 * x1))
}
mset <- c("ncg", "nvm", "anms", "tnewt")
mychk <- opm(par=c(-1.2,1), fr, grr, method=mset)
cat("Summary output from opm\n")
print(summary(mychk))
cat("extract result for method 3\n")
print(opm2optimr(mychk, 3))
cat("Alternatively for method nvm\n")
print(opm2optimr(mychk, "nvm"))
cat("Bad inputs check for character method \n")
print(try(opm2optimr(mychk, "nvv")))
cat("Bad inputs check for out of range integer")
print(try(opm2optimr(mychk, 6)))

optchk General-purpose optimization

optchk 45

Description

A wrapper function that attempts to check the objective function, and optionally the gradient and
hessian functions, supplied by the user for optimization. It also tries to check the scale of the
parameters and bounds to see if they are reasonable.

Usage

optchk(par, fn, gr=NULL, hess=NULL, lower=-Inf, upper=Inf,
control=list(), ...)

Arguments

par a vector of initial values for the parameters for which optimal values are to be
found. Names on the elements of this vector are preserved and used in the results
data frame.

fn A function to be minimized (or maximized), with first argument the vector of
parameters over which minimization is to take place. It should return a scalar
result.

gr A function to return (as a vector) the gradient for those methods that can use this
information.

hess A function to return (as a symmetric matrix) the Hessian of the objective func-
tion for those methods that can use this information.

lower, upper Bounds on the variables for methods such as "L-BFGS-B" that can handle box
(or bounds) constraints.

control A list of control parameters. See ‘Details’.

... For optimx further arguments to be passed to fn and gr; otherwise, further
arguments are not used.

Details

Note that arguments after ... must be matched exactly.

While it can be envisaged that a user would have an analytic hessian but not an analytic gradient,
we do NOT permit the user to test the hessian in this situation.

Any names given to par will be copied to the vectors passed to fn and gr. Note that no other
attributes of par are copied over. (We have not verified this as at 2009-07-29.)

Value

A list of the following items:

grOK TRUE if the analytic gradient and a numerical approximation via numDeriv agree within
the control$grtesttol as per the R code in function grchk. NULL if no analytic gradient
function is provided.

hessOK TRUE if the analytic hessian and a numerical approximation via numDeriv::jacobian
agree within the control$hesstesttol as per the R code in function hesschk. NULL if no
analytic hessian or no analytic gradient is provided. Note that since an analytic gradient must

46 optimr

be available for this test, we use the Jacobian of the gradient to compute the Hessian to avoid
one level of differencing, though the hesschk function can work without the gradient.

scalebad TRUE if the larger of the scaleratios exceeds control$scaletol

scaleratios A vector of the parameter and bounds scale ratios. See the function code of scalechk
for the computation of these values.

References

See the manual pages for optim() and the packages the DESCRIPTION suggests.

Nash JC, and Varadhan R (2011). Unifying Optimization Algorithms to Aid Software System
Users: optimx for R., Journal of Statistical Software, 43(9), 1-14., URL http://www.jstatsoft.org/v43/i09/.

Nash JC (2014). On Best Practice Optimization Methods in R., Journal of Statistical Software,
60(2), 1-14., URL http://www.jstatsoft.org/v60/i02/.

Examples

fr <- function(x) { ## Rosenbrock Banana function
x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}
grr <- function(x) { ## Gradient of 'fr'

x1 <- x[1]
x2 <- x[2]
c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1),

200 * (x2 - x1 * x1))
}

myctrl<- ctrldefault(2)
myctrl$trace <- 3
mychk <- optchk(par=c(-1.2,1), fr, grr, lower=rep(-10,2), upper=rep(10,2), control=myctrl)
cat("result of optchk\n")
print(mychk)

optimr General-purpose optimization

Description

General-purpose optimization wrapper function that calls other R tools for optimization, including
the existing optim() function. optimr also tries to unify the calling sequence to allow a number of
tools to use the same front-end, in fact using the calling sequence of the R function optim().

Usage

optimr(par, fn, gr=NULL, hess=NULL, method=NULL, lower=-Inf, upper=Inf,
hessian=FALSE, control=list(), ...)

optimr 47

Arguments

par a vector of initial values for the parameters for which optimal values are to be
found. Names on the elements of this vector are preserved and used in the results
data frame.

fn A function to be minimized (or maximized), with first argument the vector of
parameters over which minimization is to take place. It should return a scalar
result.

gr A function to return (as a vector) the gradient for those methods that can use this
information.
If gr is NULL, then this is passed forward and whatever default action is specified
for the chosen method for the case of a null gradient code is used. For many
methods, this is a finite-difference approximation, but some methods require
user input for the gradient and will fail otherwise. In such cases, we try to return
convergence of 9998.
If gr is a character string, then that string is taken as the name of a gradient ap-
proximation function, for example, "grfwd", "grback" and "grcentral" for stan-
dard forward, backward and central approximations. Method "grnd" uses the
grad() function from package numDeriv.

hess A function to return (as a matrix) the hessian for those methods that can use this
information.
If hess is the character string "approx", then ??
If hess is NULL, then this is passed forward and whatever default action is spec-
ified for the chosen method for the case of a null gradient code is used.

lower, upper Bounds on the variables for methods such as "L-BFGS-B" that can handle box
(or bounds) constraints. A small set of methods can handle masks, that is, fixed
parameters, and these can be specified by making the lower and upper bounds
equal to the starting value. (It is possible that the starting value could be different
from the lower/upper bounds set, but this behaviour has NOT yet been defined
and users are cautioned.)

method A character string giving the name of the optimization method to be applied.
See the list allmeth in file ctrldefault.R which is part of this package.

hessian A logical control that if TRUE forces the computation of an approximation to
the Hessian at the final set of parameters. Note that this will NOT necessarily
use the same approximation as may be provided by the method called. Instead,
the function hessian() from package numDeriv is used if no gradient gr is
supplied, else the function jacobian() from numDeriv is applied to the gradient
function gr.

control A list of control parameters. See ‘Details’.

... Further arguments to be passed to fn and gr if needed for computation of these
quantities; otherwise, further arguments are not used.

Details

Note that arguments after ... should be matched exactly.

48 optimr

By default optimr performs minimization, but it will maximize if control$maximize is TRUE.
The original optim() function allows control$fnscale to be set negative to accomplish this, and
this control can be used with optimr but is deprecated. Moreover, if control$maximize is set, it
will take precedence over control$fnscale. Generally it is a BAD IDEA to use both mechanisms
simultaneously.

Possible method choices are specified by the list allmeth in the file ctrldefault.R which is part
of this package.

If no method is specified, the method specified by defmethod in file ctrldefault.R (which is part
of this package) will be attempted.

Function fn must return a finite scalar value at the initial set of parameters. Some methods can
handle a returned value NA or Inf if the function cannot be evaluated at the supplied value. However,
other methods, of which "L-BFGS-B" is known to be a case, require that the values returned should
always be finite. It is recommended that user functions ALWAYS return a usable value. Note that
the control badval in ctrldefault.R give a possible number that could be returned.

For details of methods, please consult the documentation of the individual methods. (The NAMES-
PACE file lists the packages from which functions are imported.) Note that method "hjn" is a
conservative implementation of a Hooke and Jeeves (1961) and is part of this package. It is pro-
vided as a simple example of a very crude optimization method; it is NOT intended as a production
method, but may be useful for didactic purposes.

The control argument is a list that can supply any of the components in the file ctrldefault.R
which is part of this package. It may supply controls that are useful or required for particular
methods, but users are warned to be careful to ensure that extraneous or incorrect components
and values are not passed. Some control elements apply only to some methods. See individual
packages for details. optimr does not support all the possible controls for all methods.

A particular case is the method "bobyqa", where the control rhobeg=0 gives a set of controls that
depend on the bounds supplied. This choice is only in the current package. Unspecified or negative
control rhobeg=0 gives the minqa defaults. Positive value of this control (and optionally control
rhoend) supply those values. See inst/doc/examples/specctrlhobbs.R.

Any names given to par will be copied to the vectors passed to fn and gr. Apparently no other
attributes of par are copied over, but this may need to be verified, especially if parameters are
passed to non-R routines.

CAUTION: because there is a seldom-used parameter hess, you should NOT make a call like

ans <- optimr(start, myf, myg, lower, upper)

or you will likely get wrong results. Instead use

ans <- optimr(start, myf, myg, lower=lower, upper=upper)

Value

A list with components:

par The best set of parameters found.
value The value of ‘fn’ corresponding to ‘par’.
counts A two-element integer vector giving the number of calls to ‘fn’ and ‘gr’ respectively. This

excludes those calls needed to compute the Hessian, if requested, and any calls to ‘fn’ to
compute a finite-difference approximation to the gradient. NOT available to be reported for
some methods, e.g., lbfgs.

optimr 49

convergence An integer code. ‘0’ indicates successful completion. The documentation for function
opm() gives some other possible values and their meaning.

message A character string giving any additional information returned by the optimizer, or ‘NULL’.

hessian If requested, an approximation to the hessian of ‘fn’ at the final parameters.

References

See the manual pages for optim().

Hooke R. and Jeeves, TA (1961). Direct search solution of numerical and statistical problems.
Journal of the Association for Computing Machinery (ACM). 8 (2): 212–229.

Nash JC, and Varadhan R (2011). Unifying Optimization Algorithms to Aid Software System
Users: optimx for R., Journal of Statistical Software, 43(9), 1-14., URL http://www.jstatsoft.org/v43/i09/.

Nocedal J, and Wright SJ (1999). Numerical optimization. New York: Springer. 2nd Edition 2006.

Examples

Simple Test Function 1:
simfun.f = function(x) {

fun <- sum(x^2)
if (trace) ... to be fixed
print(c(x = x, fun = fun))

fun
}
simfun.g = function(x) {

grad<-2.0*x
grad

}
simfun.h = function(x) {

n<-length(x)
t<-rep(2.0,n)
hess<-diag(t)

}

library(optimx) ## May be needed for independent running.
strt <- c(1,2,3)
ansfgh <- optimr(strt, simfun.f, simfun.g, simfun.h, method="nlm",

hessian=TRUE, control=list(trace=2))
proptimr(ansfgh) # compact output of result
cat("nlm does not return good counts\n")
cat("ansfgh$counts:")
print(ansfgh$counts)

50 optimx

optimx General-purpose optimization

Description

General-purpose optimization wrapper function that calls other R tools for optimization, including
the existing optim() function. optimx also tries to unify the calling sequence to allow a number of
tools to use the same front-end. These include spg from the BB package, ucminf, nlm, and nlminb.
Note that optim() itself allows Nelder–Mead, quasi-Newton and conjugate-gradient algorithms as
well as box-constrained optimization via L-BFGS-B. Because SANN does not return a meaningful
convergence code (conv), optimx() does not call the SANN method.

Note that package optimr allows solvers to be called individually by the optim() syntax, with
the parscale control to scale parameters applicable to all methods. However, running multiple
methods, or using the follow.on capability has been moved to separate routines in the optimr
package.

Cautions:

1) Using some control list options with different or multiple methods may give unexpected results.

2) Testing the KKT conditions can take much longer than solving the optimization problem, espe-
cially when the number of parameters is large and/or analytic gradients are not available. Note that
the default for the control kkt is TRUE.

Usage

optimx(par, fn, gr=NULL, hess=NULL, lower=-Inf, upper=Inf,
method=c("Nelder-Mead","BFGS"), itnmax=NULL, hessian=FALSE,
control=list(),
...)

Arguments

par a vector of initial values for the parameters for which optimal values are to be
found. Names on the elements of this vector are preserved and used in the results
data frame.

fn A function to be minimized (or maximized), with first argument the vector of
parameters over which minimization is to take place. It should return a scalar
result.

gr A function to return (as a vector) the gradient for those methods that can use this
information.
If ’gr’ is NULL, a finite-difference approximation will be used. An open ques-
tion concerns whether the SAME approximation code used for all methods, or
whether there are differences that could/should be examined?

hess A function to return (as a symmetric matrix) the Hessian of the objective func-
tion for those methods that can use this information.

lower, upper Bounds on the variables for methods such as "L-BFGS-B" that can handle box
(or bounds) constraints.

optimx 51

method A list of the methods to be used. Note that this is an important change from
optim() that allows just one method to be specified. See ‘Details’.

itnmax If provided as a vector of the same length as the list of methods method, gives the
maximum number of iterations or function values for the corresponding method.
If a single number is provided, this will be used for all methods. Note that
there may be control list elements with similar functions, but this should be the
preferred approach when using optimx.

hessian A logical control that if TRUE forces the computation of an approximation to
the Hessian at the final set of parameters. If FALSE (default), the hessian is
calculated if needed to provide the KKT optimality tests (see kkt in ‘Details’
for the control list). This setting is provided primarily for compatibility with
optim().

control A list of control parameters. See ‘Details’.
... For optimx further arguments to be passed to fn and gr; otherwise, further

arguments are not used.

Details

Note that arguments after ... must be matched exactly.

By default this function performs minimization, but it will maximize if control$maximize is
TRUE. The original optim() function allows control$fnscale to be set negative to accomplish
this. DO NOT use both methods.

Possible method codes at the time of writing are ’Nelder-Mead’, ’BFGS’, ’CG’, ’L-BFGS-B’,
’nlm’, ’nlminb’, ’spg’, ’ucminf’, ’newuoa’, ’bobyqa’, ’nmkb’, ’hjkb’, ’Rcgmin’, or ’Rvmmin’.

The default methods for unconstrained problems (no lower or upper specified) are an implemen-
tation of the Nelder and Mead (1965) and a Variable Metric method based on the ideas of Fletcher
(1970) as modified by him in conversation with Nash (1979). Nelder-Mead uses only function val-
ues and is robust but relatively slow. It will work reasonably well for non-differentiable functions.
The Variable Metric method, "BFGS" updates an approximation to the inverse Hessian using the
BFGS update formulas, along with an acceptable point line search strategy. This method appears to
work best with analytic gradients. ("Rvmmmin" provides a box-constrained version of this algorithm.

If no method is given, and there are bounds constraints provided, the method is set to "L-BFGS-B".

Method "CG" is a conjugate gradients method based on that by Fletcher and Reeves (1964) (but with
the option of Polak–Ribiere or Beale–Sorenson updates). The particular implementation is now
dated, and improved yet simpler codes are being implemented (as at June 2009), and furthermore
a version with box constraints is being tested. Conjugate gradient methods will generally be more
fragile than the BFGS method, but as they do not store a matrix they may be successful in much
larger optimization problems.

Method "L-BFGS-B" is that of Byrd et. al. (1995) which allows box constraints, that is each
variable can be given a lower and/or upper bound. The initial value must satisfy the constraints.
This uses a limited-memory modification of the BFGS quasi-Newton method. If non-trivial bounds
are supplied, this method will be selected, with a warning.

Nocedal and Wright (1999) is a comprehensive reference for the previous three methods.

Function fn can return NA or Inf if the function cannot be evaluated at the supplied value, but
the initial value must have a computable finite value of fn. However, some methods, of which
"L-BFGS-B" is known to be a case, require that the values returned should always be finite.

52 optimx

While optim can be used recursively, and for a single parameter as well as many, this may not be
true for optimx. optim also accepts a zero-length par, and just evaluates the function with that
argument.

Method "nlm" is from the package of the same name that implements ideas of Dennis and Schnabel
(1983) and Schnabel et al. (1985). See nlm() for more details.

Method "nlminb" is the package of the same name that uses the minimization tools of the PORT
library. The PORT documentation is at <URL: http://netlib.bell-labs.com/cm/cs/cstr/153.pdf>. See
nlminb() for details. (Though there is very little information about the methods.)

Method "spg" is from package BB implementing a spectral projected gradient method for large-
scale optimization with simple constraints due R adaptation, with significant modifications, by Ravi
Varadhan, Johns Hopkins University (Varadhan and Gilbert, 2009), from the original FORTRAN
code of Birgin, Martinez, and Raydan (2001).

Method "Rcgmin" is from the package of that name. It implements a conjugate gradient algorithm
with the Dai and Yuan (2001) update and also allows bounds constraints on the parameters. (Rcgmin
also allows mask constraints – fixing individual parameters.)

Methods "bobyqa", "uobyqa" and "newuoa" are from the package "minqa" which implement opti-
mization by quadratic approximation routines of the similar names due to M J D Powell (2009). See
package minqa for details. Note that "uobyqa" and "newuoa" are for unconstrained minimization,
while "bobyqa" is for box constrained problems. While "uobyqa" may be specified, it is NOT part
of the all.methods = TRUE set.

The control argument is a list that can supply any of the following components:

trace Non-negative integer. If positive, tracing information on the progress of the optimization
is produced. Higher values may produce more tracing information: for method "L-BFGS-B"
there are six levels of tracing. trace = 0 gives no output (To understand exactly what these do
see the source code: higher levels give more detail.)

follow.on = TRUE or FALSE. If TRUE, and there are multiple methods, then the last set of
parameters from one method is used as the starting set for the next.

save.failures = TRUE if we wish to keep "answers" from runs where the method does not return
convcode==0. FALSE otherwise (default).

maximize = TRUE if we want to maximize rather than minimize a function. (Default FALSE).
Methods nlm, nlminb, ucminf cannot maximize a function, so the user must explicitly min-
imize and carry out the adjustment externally. However, there is a check to avoid usage of
these codes when maximize is TRUE. See fnscale below for the method used in optim that
we deprecate.

all.methods = TRUE if we want to use all available (and suitable) methods.

kkt =FALSE if we do NOT want to test the Kuhn, Karush, Tucker optimality conditions. The
default is TRUE. However, because the Hessian computation may be very slow, we set kkt
to be FALSE if there are more than than 50 parameters when the gradient function gr is not
provided, and more than 500 parameters when such a function is specified. We return logical
values KKT1 and KKT2 TRUE if first and second order conditions are satisfied approximately.
Note, however, that the tests are sensitive to scaling, and users may need to perform additional
verification. If kkt is FALSE but hessian is TRUE, then KKT1 is generated, but KKT2 is not.

all.methods = TRUE if we want to use all available (and suitable) methods.

optimx 53

kkttol = value to use to check for small gradient and negative Hessian eigenvalues. Default =
.Machine$double.eps^(1/3)

kkt2tol = Tolerance for eigenvalue ratio in KKT test of positive definite Hessian. Default same as
for kkttol

starttests = TRUE if we want to run tests of the function and parameters: feasibility relative
to bounds, analytic vs numerical gradient, scaling tests, before we try optimization methods.
Default is TRUE.

dowarn = TRUE if we want warnings generated by optimx. Default is TRUE.

badval = The value to set for the function value when try(fn()) fails. Default is (0.5)*.Machine$double.xmax

usenumDeriv = TRUE if the numDeriv function grad() is to be used to compute gradients when
the argument gr is NULL or not supplied.

The following control elements apply only to some of the methods. The list may be incomplete.
See individual packages for details.

fnscale An overall scaling to be applied to the value of fn and gr during optimization. If negative,
turns the problem into a maximization problem. Optimization is performed on fn(par)/fnscale.
For methods from the set in optim(). Note potential conflicts with the control maximize.

parscale A vector of scaling values for the parameters. Optimization is performed on par/parscale
and these should be comparable in the sense that a unit change in any element produces about
a unit change in the scaled value.For optim.

ndeps A vector of step sizes for the finite-difference approximation to the gradient, on par/parscale
scale. Defaults to 1e-3. For optim.

maxit The maximum number of iterations. Defaults to 100 for the derivative-based methods, and
500 for "Nelder-Mead".

abstol The absolute convergence tolerance. Only useful for non-negative functions, as a tolerance
for reaching zero.

reltol Relative convergence tolerance. The algorithm stops if it is unable to reduce the value by a
factor of reltol * (abs(val) + reltol) at a step. Defaults to sqrt(.Machine$double.eps),
typically about 1e-8. For optim.

alpha, beta, gamma Scaling parameters for the "Nelder-Mead" method. alpha is the reflection
factor (default 1.0), beta the contraction factor (0.5) and gamma the expansion factor (2.0).

REPORT The frequency of reports for the "BFGS" and "L-BFGS-B" methods if control$trace is
positive. Defaults to every 10 iterations for "BFGS" and "L-BFGS-B".

type for the conjugate-gradients method. Takes value 1 for the Fletcher–Reeves update, 2 for
Polak–Ribiere and 3 for Beale–Sorenson.

lmm is an integer giving the number of BFGS updates retained in the "L-BFGS-B" method, It de-
faults to 5.

factr controls the convergence of the "L-BFGS-B" method. Convergence occurs when the reduc-
tion in the objective is within this factor of the machine tolerance. Default is 1e7, that is a
tolerance of about 1e-8.

pgtol helps control the convergence of the "L-BFGS-B" method. It is a tolerance on the projected
gradient in the current search direction. This defaults to zero, when the check is suppressed.

54 optimx

Any names given to par will be copied to the vectors passed to fn and gr. Note that no other
attributes of par are copied over. (We have not verified this as at 2009-07-29.)

There are [.optimx, as.data.frame.optimx, coef.optimx and summary.optimx methods avail-
able.

Note: Package optimr is a derivative of this package. It was developed initially to overcome
maintenance difficulties with the current package related to avoiding confusion if some multiple
options were specified together, and to allow the optim() function syntax to be used consistently,
including the parscale control. However, this package does perform well, and is called by a
number of popular other packages.

Value

If there are npar parameters, then the result is a dataframe having one row for each method for
which results are reported, using the method as the row name, with columns

par_1, .., par_npar, value, fevals, gevals, niter, convcode, kkt1, kkt2, xtimes

where

par_1 ..

par_npar The best set of parameters found.

value The value of fn corresponding to par.

fevals The number of calls to fn.

gevals The number of calls to gr. This excludes those calls needed to compute the Hessian, if
requested, and any calls to fn to compute a finite-difference approximation to the gradient.

niter For those methods where it is reported, the number of “iterations”. See the documentation or
code for particular methods for the meaning of such counts.

convcode An integer code. 0 indicates successful convergence. Various methods may or may not
return sufficient information to allow all the codes to be specified. An incomplete list of codes
includes

1 indicates that the iteration limit maxit had been reached.
20 indicates that the initial set of parameters is inadmissible, that is, that the function cannot

be computed or returns an infinite, NULL, or NA value.
21 indicates that an intermediate set of parameters is inadmissible.
10 indicates degeneracy of the Nelder–Mead simplex.
51 indicates a warning from the "L-BFGS-B" method; see component message for further

details.
52 indicates an error from the "L-BFGS-B" method; see component message for further de-

tails.

kkt1 A logical value returned TRUE if the solution reported has a “small” gradient.

kkt2 A logical value returned TRUE if the solution reported appears to have a positive-definite
Hessian.

xtimes The reported execution time of the calculations for the particular method.

optimx 55

The attribute "details" to the returned answer object contains information, if computed, on the gradi-
ent (ngatend) and Hessian matrix (nhatend) at the supposed optimum, along with the eigenvalues
of the Hessian (hev), as well as the message, if any, returned by the computation for each method,
which is included for each row of the details. If the returned object from optimx() is ans, this is
accessed via the construct attr(ans, "details")

This object is a matrix based on a list so that if ans is the output of optimx then attr(ans, "de-
tails")[1,] gives the first row and attr(ans,"details")["Nelder-Mead",] gives the Nelder-Mead row.
There is one row for each method that has been successful or that has been forcibly saved by
save.failures=TRUE.

There are also attributes

maximize to indicate we have been maximizing the objective

npar to provide the number of parameters, thereby facilitating easy extraction of the parameters
from the results data frame

follow.on to indicate that the results have been computed sequentially, using the order provided by
the user, with the best parameters from one method used to start the next. There is an example
(ans9) in the script ox.R in the demo directory of the package.

Note

Most methods in optimx will work with one-dimensional pars, but such use is NOT recommended.
Use optimize or other one-dimensional methods instead.

There are a series of demos available. Once the package is loaded (via require(optimx) or
library(optimx), you may see available demos via

demo(package="optimx")

The demo ’brown_test’ may be run with the command demo(brown_test, package="optimx")

The package source contains several functions that are not exported in the NAMESPACE. These
are

optimx.setup() which establishes the controls for a given run;

optimx.check() which performs bounds and gradient checks on the supplied parameters and
functions;

optimx.run() which actually performs the optimization and post-solution computations;

scalecheck() which actually carries out a check on the relative scaling of the input parameters.

Knowledgeable users may take advantage of these functions if they are carrying out production
calculations where the setup and checks could be run once.

Source

See the manual pages for optim() and the packages the DESCRIPTION suggests.

56 optimx

References

See also the manual pages for optim() and the packages the DESCRIPTION suggests.

Byrd RH, Lu P, Nocedal J (1995) A Limited Memory Algorithm for Bound Constrained Optimiza-
tion, SIAM Journal on Scientific Computing, 16 (5), 1190–1208.

Y. H. Dai and Y. Yuan, (2001) An Efficient Hybrid Conjugate Gradient Method for Unconstrained
Optimization, Annals of Operations Research, 103, pp 33–47, URL http://dx.doi.org/10.1023/A:1012930416777.

Dennis JE and Schnabel RB (1983) Numerical Methods for Unconstrained Optimization and Non-
linear Equations, Englewood Cliffs NJ: Prentice-Hall.

Fletcher R (1970) A New Approach to Variable Metric Algorithms, Computer Journal, 13 (3), 317-
322.

Nash JC, and Varadhan R (2011). Unifying Optimization Algorithms to Aid Software System
Users: optimx for R., Journal of Statistical Software, 43(9), 1-14., URL http://www.jstatsoft.org/v43/i09/.

Nash JC (2014). On Best Practice Optimization Methods in R., Journal of Statistical Software,
60(2), 1-14., URL http://www.jstatsoft.org/v60/i02/.

Nelder JA and Mead R (1965) A Simplex Method for Function Minimization, Computer Journal, 7
(4), 308–313.

Powell MJD (2009) The BOBYQA algorithm for bound constrained optimization without deriva-
tives, http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf

See Also

spg, nlm, nlminb, bobyqa, ucminf, nmkb, hjkb. optimize for one-dimensional minimization;
constrOptim or spg for linearly constrained optimization.

Examples

require(graphics)
cat("Note demo(ox) for extended examples\n")

Show multiple outputs of optimx using all.methods
genrose function code
genrose.f<- function(x, gs=NULL){ # objective function
One generalization of the Rosenbrock banana valley function (n parameters)
n <- length(x)

if(is.null(gs)) { gs=100.0 }
fval<-1.0 + sum (gs*(x[1:(n-1)]^2 - x[2:n])^2 + (x[2:n] - 1)^2)

return(fval)
}

genrose.g <- function(x, gs=NULL){
vectorized gradient for genrose.f
Ravi Varadhan 2009-04-03
n <- length(x)

if(is.null(gs)) { gs=100.0 }
gg <- as.vector(rep(0, n))
tn <- 2:n
tn1 <- tn - 1

polyopt 57

z1 <- x[tn] - x[tn1]^2
z2 <- 1 - x[tn]
gg[tn] <- 2 * (gs * z1 - z2)
gg[tn1] <- gg[tn1] - 4 * gs * x[tn1] * z1
return(gg)

}

genrose.h <- function(x, gs=NULL) { ## compute Hessian
if(is.null(gs)) { gs=100.0 }

n <- length(x)
hh<-matrix(rep(0, n*n),n,n)
for (i in 2:n) {
z1<-x[i]-x[i-1]*x[i-1]
z2<-1.0-x[i]

hh[i,i]<-hh[i,i]+2.0*(gs+1.0)
hh[i-1,i-1]<-hh[i-1,i-1]-4.0*gs*z1-4.0*gs*x[i-1]*(-2.0*x[i-1])
hh[i,i-1]<-hh[i,i-1]-4.0*gs*x[i-1]
hh[i-1,i]<-hh[i-1,i]-4.0*gs*x[i-1]

}
return(hh)

}

startx<-4*seq(1:10)/3.
ans8<-optimx(startx,fn=genrose.f,gr=genrose.g, hess=genrose.h,

control=list(all.methods=TRUE, save.failures=TRUE, trace=0), gs=10)
ans8
ans8[, "gevals"]
ans8["spg",]
summary(ans8, par.select = 1:3)
summary(ans8, order = value)[1,] # show best value
head(summary(ans8, order = value)) # best few
head(summary(ans8, order = "value")) # best few -- alternative syntax

order by value. Within those values the same to 3 decimals order by fevals.
summary(ans8, order = list(round(value, 3), fevals), par.select = FALSE)
summary(ans8, order = "list(round(value, 3), fevals)", par.select = FALSE)

summary(ans8, order = rownames, par.select = FALSE) # order by method name
summary(ans8, order = "rownames", par.select = FALSE) # same

summary(ans8, order = NULL, par.select = FALSE) # use input order
summary(ans8, par.select = FALSE) # same

polyopt General-purpose optimization - sequential application of methods

Description

Multiple minimization methods are applied in sequence to a single problem, with the output param-
eters of one method being used to start the next.

58 polyopt

Usage

polyopt(par, fn, gr=NULL, lower=-Inf, upper=Inf,
methcontrol=NULL, hessian=FALSE,
control=list(),
...)

Arguments

par a vector of initial values for the parameters for which optimal values are to be
found. Names on the elements of this vector are preserved and used in the results
data frame.

fn A function to be minimized (or maximized), with first argument the vector of
parameters over which minimization is to take place. It should return a scalar
result.

gr A function to return (as a vector) the gradient for those methods that can use this
information.
If ’gr’ is NULL, a finite-difference approximation will be used. An open ques-
tion concerns whether the SAME approximation code used for all methods, or
whether there are differences that could/should be examined?

lower, upper Bounds on the variables for methods such as "L-BFGS-B" that can handle box
(or bounds) constraints.

methcontrol An data frame of which each row gives an optimization method, a maximum
number of iterations and a maximum number of function evaluations allowed
for that method. Each method will be executed in turn until either the maximum
iterations or function evaluations are completed, whichever is first. The next
method is then executed starting with the best parameters found so far, else the
function exits.

hessian A logical control that if TRUE forces the computation of an approximation to
the Hessian at the final set of parameters. If FALSE (default), the hessian is
calculated if needed to provide the KKT optimality tests (see kkt in ‘Details’
for the control list). This setting is provided primarily for compatibility with
optim().

control A list of control parameters. See ‘Details’.

... For optimx further arguments to be passed to fn and gr; otherwise, further
arguments are not used.

Details

Note that arguments after ... must be matched exactly.

See optimr() for other details.

Note that this function does not (yet?) make use of a hess function to compute the hessian.

Value

An array with one row per method. Each row contains:

polyopt 59

par The best set of parameters found for the method in question.

value The value of ‘fn’ corresponding to ‘par’.

counts A two-element integer vector giving the number of calls to ‘fn’ and ‘gr’ respec-
tively. This excludes those calls needed to compute the Hessian, if requested,
and any calls to ‘fn’ to compute a finite-difference approximation to the gradient.

convergence An integer code. ‘0’ indicates successful completion

message A character string giving any additional information returned by the optimizer,
or ‘NULL’.

hessian Always NULL for this routine.

Source

See the manual pages for optim() and the packages the DESCRIPTION suggests.

Examples

fnR <- function (x, gs=100.0)
{

n <- length(x)
x1 <- x[2:n]
x2 <- x[1:(n - 1)]
sum(gs * (x1 - x2^2)^2 + (1 - x2)^2)

}
grR <- function (x, gs=100.0)
{

n <- length(x)
g <- rep(NA, n)
g[1] <- 2 * (x[1] - 1) + 4*gs * x[1] * (x[1]^2 - x[2])
if (n > 2) {

ii <- 2:(n - 1)
g[ii] <- 2 * (x[ii] - 1) + 4 * gs * x[ii] * (x[ii]^2 - x[ii +

1]) + 2 * gs * (x[ii] - x[ii - 1]^2)
}
g[n] <- 2 * gs * (x[n] - x[n - 1]^2)
g

}

x0 <- rep(pi, 4)
mc <- data.frame(method=c("Nelder-Mead","Rvmmin"), maxit=c(1000, 100), maxfeval= c(1000, 1000))

ans <- polyopt(x0, fnR, grR, methcontrol=mc, control=list(trace=0))
ans
mc <- data.frame(method=c("Nelder-Mead","Rvmmin"), maxit=c(100, 100), maxfeval= c(100, 1000))

ans <- polyopt(x0, fnR, grR, methcontrol=mc, control=list(trace=0))
ans

mc <- data.frame(method=c("Nelder-Mead","Rvmmin"), maxit=c(10, 100), maxfeval= c(10, 1000))

ans <- polyopt(x0, fnR, grR, methcontrol=mc, control=list(trace=0))

60 Rcgmin

ans

proptimr Compact display of an optimr() result object

Description

proptimr displays the contents of a result computed by optimr().

Usage

proptimr(opres)

Arguments

opres the object returned by function optimr()

Value

This function is intended for output only.

Author(s)

John C. Nash

Rcgmin An R implementation of a nonlinear conjugate gradient algorithm with
the Dai / Yuan update and restart. Based on Nash (1979) Algorithm
22 for its main structure.

Description

The purpose of Rcgmin is to minimize an unconstrained or bounds (box) and mask constrained
function of many parameters by a nonlinear conjugate gradients method. This code is entirely in R
to allow users to explore and understand the method. It also allows bounds (or box) constraints and
masks (equality constraints) to be imposed on parameters.

Rcgmin is a wrapper that calls Rcgminu for unconstrained problems, else Rcgminb.

Usage

Rcgmin(par, fn, gr, lower, upper, bdmsk, control = list(), ...)

ncg(par, fn, gr, bds, control = list())

Rcgmin 61

Arguments

par A numeric vector of starting estimates.

fn A function that returns the value of the objective at the supplied set of parameters
par using auxiliary data in The first argument of fn must be par.

gr A function that returns the gradient of the objective at the supplied set of param-
eters par using auxiliary data in The first argument of fn must be par. This
function returns the gradient as a numeric vector.
If gr is not provided or is NULL, then the simple forward gradient code grfwd is
used. However, we recommend carefully coded and checked analytic derivatives
for Rcgmin.
The use of numerical gradients for Rcgmin is discouraged. First, the termination
test uses a size measure on the gradient, and numerical gradient approximations
can sometimes give results that are too large. Second, if there are bounds con-
straints, the step(s) taken to calculate the approximation to the derivative are
NOT checked to see if they are out of bounds, and the function may be unde-
fined at the evaluation point.
There is also the option of using the routines grfwd, grback, grcentral or
grnd. The last of these calls the grad() function from package numDeriv. These
are called by putting the name of the (numerical) gradient function in quotation
marks, e.g.,
gr="grfwd"
to use the standard forward difference numerical approximation.
Note that all but the grnd routine use a stepsize parameter that can be rede-
fined in a special scratchpad storage variable deps. The default is deps = 1e-07.
However, redefining this is discouraged unless you understand what you are do-
ing.

lower A vector of lower bounds on the parameters.

upper A vector of upper bounds on the parameters.

bdmsk An indicator vector, having 1 for each parameter that is "free" or unconstrained,
and 0 for any parameter that is fixed or MASKED for the duration of the opti-
mization.

bds A list of information resulting from function bmchk giving information on the
status of the parameters and bounds and masks.

control An optional list of control settings.

... Further arguments to be passed to fn.

Details

Functions fn must return a numeric value.

Note that ncg is to be called from optimr and does NOT allow dot arguments. It is intended to use
the internal functions efn and egr generated inside optimr() along with bounds information from
bmchk() available there.

The control argument is a list.

62 Rcgmin

maxit A limit on the number of iterations (default 500). Note that this is used to compute a quantity
maxfeval<-round(sqrt(n+1)*maxit) where n is the number of parameters to be minimized.

trace Set 0 (default) for no output, >0 for trace output (larger values imply more output).

eps Tolerance used to calculate numerical gradients. Default is 1.0E-7. See source code for Rcgmin
for details of application.

dowarn = TRUE if we want warnings generated by optimx. Default is TRUE.

tol Tolerance used in testing the size of the square of the gradient. Default is 0 on input, which
uses a value of tolgr = npar*npar*.Machine$double.eps in testing if crossprod(g) <= tolgr *
(abs(fmin) + reltest). If the user supplies a value for tol that is non-zero, then that value is
used for tolgr.
reltest=100 is only alterable by changing the code. fmin is the current best value found for the
function minimum value.
Note that the scale of the gradient means that tests for a small gradient can easily be mis-
matched to a given problem. The defaults in Rcgmin are a "best guess".

checkgrad = TRUE if we want gradient function checked against numerical approximations. De-
fault is FALSE.

checkbounds = TRUE if we want bounds verified. Default is TRUE.

As of 2011-11-21 the following controls have been REMOVED

usenumDeriv There is now a choice of numerical gradient routines. See argument gr.

maximize To maximize user_function, supply a function that computes (-1)*user_function. An al-
ternative is to call Rcgmin via the package optimx, where the MAXIMIZE field of the OPCON
structure in package optfntools is used.

Value

A list with components:

par The best set of parameters found.

value The value of the objective at the best set of parameters found.

counts A two-element integer vector giving the number of calls to ’fn’ and ’gr’ respec-
tively. This excludes those calls needed to compute the Hessian, if requested,
and any calls to ’fn’ to compute a finite-difference approximation to the gradient.

convergence An integer code. ’0’ indicates successful convergence. ’1’ indicates that the
function evaluation count ’maxfeval’ was reached. ’2’ indicates initial point is
infeasible.

message A character string giving any additional information returned by the optimizer,
or ’NULL’.

bdmsk Returned index describing the status of bounds and masks at the proposed solu-
tion. Parameters for which bdmsk are 1 are unconstrained or "free", those with
bdmsk 0 are masked i.e., fixed. For historical reasons, we indicate a parameter
is at a lower bound using -3 or upper bound using -1.

Rcgmin 63

References

Dai, Y. H. and Y. Yuan (2001). An efficient hybrid conjugate gradient method for unconstrained
optimization. Annals of Operations Research 103 (1-4), 33–47.

Nash JC (1979). Compact Numerical Methods for Computers: Linear Algebra and Function Min-
imisation. Adam Hilger, Bristol. Second Edition, 1990, Bristol: Institute of Physics Publications.

Nash, J. C. and M. Walker-Smith (1987). Nonlinear Parameter Estimation: An Integrated System
in BASIC. New York: Marcel Dekker. See https://www.nashinfo.com/nlpe.htm for a downloadable
version of this plus some extras.

See Also

optim

Examples

#####################
require(numDeriv)
Rosenbrock Banana function
fr <- function(x) {

x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}

grr <- function(x) { ## Gradient of 'fr'
x1 <- x[1]
x2 <- x[2]
c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1),

200 * (x2 - x1 * x1))
}

grn<-function(x){
gg<-grad(fr, x)

}

ansrosenbrock0 <- Rcgmin(fn=fr,gr=grn, par=c(1,2))
print(ansrosenbrock0) # use print to allow copy to separate file that
can be called using source()
#####################
Simple bounds and masks test
bt.f<-function(x){
sum(x*x)
}

bt.g<-function(x){
gg<-2.0*x

}

n<-10
xx<-rep(0,n)

64 Rcgmin

lower<-rep(0,n)
upper<-lower # to get arrays set
bdmsk<-rep(1,n)
bdmsk[(trunc(n/2)+1)]<-0
for (i in 1:n) {

lower[i]<-1.0*(i-1)*(n-1)/n
upper[i]<-1.0*i*(n+1)/n

}
xx<-0.5*(lower+upper)
ansbt<-Rcgmin(xx, bt.f, bt.g, lower, upper, bdmsk, control=list(trace=1))

print(ansbt)

#####################
genrose.f<- function(x, gs=NULL){ # objective function
One generalization of the Rosenbrock banana valley function (n parameters)
n <- length(x)

if(is.null(gs)) { gs=100.0 }
fval<-1.0 + sum (gs*(x[1:(n-1)]^2 - x[2:n])^2 + (x[2:n] - 1)^2)

return(fval)
}
genrose.g <- function(x, gs=NULL){
vectorized gradient for genrose.f
Ravi Varadhan 2009-04-03
n <- length(x)

if(is.null(gs)) { gs=100.0 }
gg <- as.vector(rep(0, n))
tn <- 2:n
tn1 <- tn - 1
z1 <- x[tn] - x[tn1]^2
z2 <- 1 - x[tn]
gg[tn] <- 2 * (gs * z1 - z2)
gg[tn1] <- gg[tn1] - 4 * gs * x[tn1] * z1
gg

}

analytic gradient test
xx<-rep(pi,10)
lower<-NULL
upper<-NULL
bdmsk<-NULL
genrosea<-Rcgmin(xx,genrose.f, genrose.g, gs=10)
genrosen<-optimr(xx, genrose.f, "grfwd", method="Rcgmin", gs=10)
genrosenn<-try(Rcgmin(xx,genrose.f, gs=10)) # use local numerical gradient
cat("genrosea uses analytic gradient\n")
print(genrosea)
cat("genrosen uses default gradient approximation\n")
print(genrosen)

cat("timings B vs U\n")
lo<-rep(-100,10)
up<-rep(100,10)
bdmsk<-rep(1,10)

Rcgmin 65

tb<-system.time(ab<-Rcgminb(xx,genrose.f, genrose.g, lower=lo, upper=up, bdmsk=bdmsk))[1]
tu<-system.time(au<-Rcgminu(xx,genrose.f, genrose.g))[1]
cat("times U=",tu," B=",tb,"\n")
cat("solution Rcgminu\n")
print(au)
cat("solution Rcgminb\n")
print(ab)
cat("diff fu-fb=",au$value-ab$value,"\n")
cat("max abs parameter diff = ", max(abs(au$par-ab$par)),"\n")

maxfn<-function(x) {
n<-length(x)

ss<-seq(1,n)
f<-10-(crossprod(x-ss))^2
f<-as.numeric(f)
return(f)

}

gmaxfn<-function(x) {
gg<-grad(maxfn, x)

}

negmaxfn<-function(x) {
f<-(-1)*maxfn(x)
return(f)

}

cat("test that maximize=TRUE works correctly\n")

n<-6
xx<-rep(1,n)
ansmax<-Rcgmin(xx,maxfn, gmaxfn, control=list(maximize=TRUE,trace=1))
print(ansmax)

cat("using the negmax function should give same parameters\n")
ansnegmaxn<-optimr(xx,negmaxfn, "grfwd", method="Rcgmin", control=list(trace=1))
print(ansnegmaxn)

##################### From Rvmmin.Rd
cat("test bounds and masks\n")
nn<-4
startx<-rep(pi,nn)
lo<-rep(2,nn)
up<-rep(10,nn)
grbds1<-Rcgmin(startx,genrose.f, gr=genrose.g,lower=lo,upper=up)
print(grbds1)

cat("test lower bound only\n")
nn<-4

66 Rcgmin

startx<-rep(pi,nn)
lo<-rep(2,nn)
grbds2<-Rcgmin(startx,genrose.f, gr=genrose.g,lower=lo)
print(grbds2)

cat("test lower bound single value only\n")
nn<-4
startx<-rep(pi,nn)
lo<-2
up<-rep(10,nn)
grbds3<-Rcgmin(startx,genrose.f, gr=genrose.g,lower=lo)
print(grbds3)

cat("test upper bound only\n")
nn<-4
startx<-rep(pi,nn)
lo<-rep(2,nn)
up<-rep(10,nn)
grbds4<-Rcgmin(startx,genrose.f, gr=genrose.g,upper=up)
print(grbds4)

cat("test upper bound single value only\n")
nn<-4
startx<-rep(pi,nn)
grbds5<-Rcgmin(startx,genrose.f, gr=genrose.g,upper=10)
print(grbds5)

cat("test masks only\n")
nn<-6
bd<-c(1,1,0,0,1,1)
startx<-rep(pi,nn)
grbds6<-Rcgmin(startx,genrose.f, gr=genrose.g,bdmsk=bd)
print(grbds6)

cat("test upper bound on first two elements only\n")
nn<-4
startx<-rep(pi,nn)
upper<-c(10,8, Inf, Inf)
grbds7<-Rcgmin(startx,genrose.f, gr=genrose.g,upper=upper)
print(grbds7)

cat("test lower bound on first two elements only\n")
nn<-4
startx<-rep(0,nn)
lower<-c(0,1.1, -Inf, -Inf)
grbds8<-Rcgmin(startx,genrose.f,genrose.g,lower=lower, control=list(maxit=2000))
print(grbds8)

cat("test n=1 problem using simple squares of parameter\n")

Rcgminb 67

sqtst<-function(xx) {
res<-sum((xx-2)*(xx-2))

}

gsqtst<-function(xx) {
gg<-2*(xx-2)

}

######### One dimension test
nn<-1
startx<-rep(0,nn)
onepar<-Rcgmin(startx,sqtst, gr=gsqtst,control=list(trace=1))
print(onepar)

cat("Suppress warnings\n")
oneparnw<-Rcgmin(startx,sqtst, gr=gsqtst,control=list(dowarn=FALSE,trace=1))
print(oneparnw)

Rcgminb An R implementation of a bounded nonlinear conjugate gradient al-
gorithm with the Dai / Yuan update and restart. Based on Nash (1979)
Algorithm 22 for its main structure. CALL THIS VIA Rcgmin AND DO
NOT USE DIRECTLY.

Description

The purpose of Rcgminb is to minimize a bounds (box) and mask constrained function of many
parameters by a nonlinear conjugate gradients method. This code is entirely in R to allow users
to explore and understand the method. It allows bounds (or box) constraints and masks (equality
constraints) to be imposed on parameters.

This code should be called through Rcgmin which selects Rcgminb or Rcgminu according to the
presence of bounds and masks.

Usage

Rcgminb(par, fn, gr, lower, upper, bdmsk, control = list(), ...)

Arguments

par A numeric vector of starting estimates.

fn A function that returns the value of the objective at the supplied set of parameters
par using auxiliary data in The first argument of fn must be par.

gr A function that returns the gradient of the objective at the supplied set of param-
eters par using auxiliary data in The first argument of fn must be par. This
function returns the gradient as a numeric vector.
The use of numerical gradients for Rcgminb is STRONGLY discouraged.

68 Rcgminb

lower A vector of lower bounds on the parameters.

upper A vector of upper bounds on the parameters.

bdmsk An indicator vector, having 1 for each parameter that is "free" or unconstrained,
and 0 for any parameter that is fixed or MASKED for the duration of the opti-
mization.

control An optional list of control settings.

... Further arguments to be passed to fn.

Details

Functions fn must return a numeric value.

The control argument is a list.

maxit A limit on the number of iterations (default 500). Note that this is used to compute a quantity
maxfeval<-round(sqrt(n+1)*maxit) where n is the number of parameters to be minimized.

trace Set 0 (default) for no output, >0 for trace output (larger values imply more output).

eps Tolerance used to calculate numerical gradients. Default is 1.0E-7. See source code for
Rcgminb for details of application.

dowarn = TRUE if we want warnings generated by optimx. Default is TRUE.

Note: The source code Rcgminb for R is likely to remain a work in progress for some time, so users
should watch the console output.

As of 2011-11-21 the following controls have been REMOVED

usenumDeriv There is now a choice of numerical gradient routines. See argument gr.

maximize To maximize user_function, supply a function that computes (-1)*user_function. An
alternative is to call Rcgmin via the package optimx.

Value

A list with components:

par The best set of parameters found.

value The value of the objective at the best set of parameters found.

counts A two-element integer vector giving the number of calls to ’fn’ and ’gr’ respec-
tively. This excludes those calls needed to compute the Hessian, if requested,
and any calls to ’fn’ to compute a finite-difference approximation to the gradient.

convergence An integer code. ’0’ indicates successful convergence. ’1’ indicates that the
function evaluation count ’maxfeval’ was reached. ’2’ indicates initial point is
infeasible.

message A character string giving any additional information returned by the optimizer,
or ’NULL’.

bdmsk Returned index describing the status of bounds and masks at the proposed solu-
tion. Parameters for which bdmsk are 1 are unconstrained or "free", those with
bdmsk 0 are masked i.e., fixed. For historical reasons, we indicate a parameter
is at a lower bound using -3 or upper bound using -1.

Rcgminu 69

References

See Rcgmin documentation. Note that bounds and masks were adapted from the work by Nash and
Walker-Smith(1987).

See Also

optim

Rcgminu An R implementation of an unconstrained nonlinear conjugate gradi-
ent algorithm with the Dai / Yuan update and restart. Based on Nash
(1979) Algorithm 22 for its main structure. CALL THIS VIA Rcgmin
AND DO NOT USE DIRECTLY.

Description

The purpose of Rcgminu is to minimize an unconstrained function of many parameters by a nonlin-
ear conjugate gradients method. This code is entirely in R to allow users to explore and understand
the method.

This code should be called through Rcgmin which selects Rcgminb or Rcgminu according to the
presence of bounds and masks.

Usage

Rcgminu(par, fn, gr, control = list(), ...)

Arguments

par A numeric vector of starting estimates.

fn A function that returns the value of the objective at the supplied set of parameters
par using auxiliary data in The first argument of fn must be par.

gr A function that returns the gradient of the objective at the supplied set of param-
eters par using auxiliary data in The first argument of fn must be par. This
function returns the gradient as a numeric vector.
The use of numerical gradients for Rcgminu is STRONGLY discouraged.

control An optional list of control settings.

... Further arguments to be passed to fn.

Details

Functions fn must return a numeric value.

The control argument is a list.

maxit A limit on the number of iterations (default 500). Note that this is used to compute a quantity
maxfeval<-round(sqrt(n+1)*maxit) where n is the number of parameters to be minimized.

70 Rcgminu

trace Set 0 (default) for no output, >0 for trace output (larger values imply more output).

eps Tolerance used to calculate numerical gradients. Default is 1.0E-7. See source code for
Rcgminu for details of application.

dowarn = TRUE if we want warnings generated by optimx. Default is TRUE.

Note: The source code Rcgminu for R is likely to remain a work in progress for some time, so users
should watch the console output.

As of 2011-11-21 the following controls have been REMOVED

usenumDeriv There is now a choice of numerical gradient routines. See argument gr.

maximize To maximize user_function, supply a function that computes (-1)*user_function. An
alternative is to call Rcgmin via the package optimx.

Value

A list with components:

par The best set of parameters found.

value The value of the objective at the best set of parameters found.

counts A two-element integer vector giving the number of calls to ’fn’ and ’gr’ respec-
tively. This excludes those calls needed to compute the Hessian, if requested,
and any calls to ’fn’ to compute a finite-difference approximation to the gradient.

convergence An integer code. ’0’ indicates successful convergence. ’1’ indicates that the
function evaluation count ’maxfeval’ was reached. ’2’ indicates initial point is
infeasible.

message A character string giving any additional information returned by the optimizer,
or ’NULL’.

bdmsk Returned index describing the status of bounds and masks at the proposed solu-
tion. Parameters for which bdmsk are 1 are unconstrained or "free", those with
bdmsk 0 are masked i.e., fixed. For historical reasons, we indicate a parameter
is at a lower bound using -3 or upper bound using -1.

References

See Rcgmin documentation.

See Also

optim

Rvmmin 71

Rvmmin Variable metric nonlinear function minimization, driver.

Description

A driver to call the unconstrained and bounds constrained versions of an R implementation of a
variable metric method for minimization of nonlinear functions, possibly subject to bounds (box)
constraints and masks (fixed parameters). The algorithm is based on Nash (1979) Algorithm 21
for main structure, which is itself drawn from Fletcher’s (1970) variable metric code. This is also
the basis of optim() method ’BFGS’ which, however, does not deal with bounds or masks. In the
present method, an approximation to the inverse Hessian (B) is used to generate a search direction
t = - B %*% g, a simple backtracking line search is used until an acceptable point is found, and
the matrix B is updated using a BFGS formula. If no acceptable point can be found, we reset B to
the identity i.e., the search direction becomes the negative gradient. If the search along the negative
gradient is unsuccessful, the method terminates.

This set of codes is entirely in R to allow users to explore and understand the method. It also allows
bounds (or box) constraints and masks (equality constraints) to be imposed on parameters.

Usage

Rvmmin(par, fn, gr, lower, upper, bdmsk, control = list(), ...)

nvm(par, fn, gr, bds, control = list())

Arguments

par A numeric vector of starting estimates.

fn A function that returns the value of the objective at the supplied set of parameters
par using auxiliary data in The first argument of fn must be par.

gr A function that returns the gradient of the objective at the supplied set of param-
eters par using auxiliary data in The first argument of fn must be par. This
function returns the gradient as a numeric vector.
Note that a gradient function must generally be provided. However, to ensure
compatibility with other optimizers, if gr is NULL, the forward gradient ap-
proximation from routine grfwd will be used.
The use of numerical gradients for Rvmmin is discouraged. First, the termina-
tion test uses a size measure on the gradient, and numerical gradient approxima-
tions can sometimes give results that are too large. Second, if there are bounds
constraints, the step(s) taken to calculate the approximation to the derivative are
NOT checked to see if they are out of bounds, and the function may be undefined
at the evaluation point.
There is also the option of using the routines grfwd, grback, grcentral or
grnd. The last of these calls the grad() function from package numDeriv. These
are called by putting the name of the (numerical) gradient function in quotation
marks, e.g.,

72 Rvmmin

gr="grfwd"
to use the standard forward difference numerical approximation.
Note that all but the grnd routine use a stepsize parameter that can be rede-
fined in a special scratchpad storage variable deps. The default is deps = 1e-07.
However, redefining this is discouraged unless you understand what you are do-
ing.

bds A list of information resulting from function bmchk giving information on the
status of the parameters and bounds and masks.

lower A vector of lower bounds on the parameters.

upper A vector of upper bounds on the parameters.

bdmsk An indicator vector, having 1 for each parameter that is "free" or unconstrained,
and 0 for any parameter that is fixed or MASKED for the duration of the opti-
mization.

control An optional list of control settings.

... Further arguments to be passed to fn.

Details

Note that nvm is to be called from optimr and does NOT allow dot arguments. It is intended to use
the internal functions efn and egr generated inside optimr() along with bounds information from
bmchk() available there.

The source codes Rvmmin and nvm for R are still a work in progress, so users should watch the
console output. The routine nvm attempts to use minimal checking and works only with a bounds
constrained version of the algorithm, which may work as fast as a specific routine for unconstrained
problems. This is an open question, and the author welcomes feedback.

Function fn must return a numeric value.

The control argument is a list.

The control argument is a list.

maxit A limit on the number of iterations (default 500 + 2*n where n is the number of parameters).
This is the maximum number of gradient evaluations allowed.

maxfeval A limit on the number of function evaluations allowed (default 3000 + 10*n).

trace Set 0 (default) for no output, > 0 for diagnostic output (larger values imply more output).

dowarn = TRUE if we want warnings generated by optimx. Default is TRUE.

checkgrad = TRUE if we wish analytic gradient code checked against the approximations com-
puted by numDeriv. Default is FALSE.

checkbounds = TRUE if we wish parameters and bounds to be checked for an admissible and
feasible start. Default is TRUE.

keepinputpar = TRUE if we want bounds check to stop program when parameters are out of
bounds. Else when FALSE, moves parameter values to nearest bound. Default is FALSE.

maximize To maximize user_function, supply a function that computes (-1)*user_function. An
alternative is to call Rvmmin via the package optimx.

Rvmmin 73

eps a tolerance used for judging small gradient norm (default = 1e-07). a gradient norm smaller
than (1 + abs(fmin))*eps*eps is considered small enough that a local optimum has been found,
where fmin is the current estimate of the minimal function value.

acctol To adjust the acceptable point tolerance (default 0.0001) in the test (f <= fmin + gradproj *
steplength * acctol). This test is used to ensure progress is made at each iteration.

stepredn Step reduction factor for backtrack line search (default 0.2)

reltest Additive shift for equality test (default 100.0)

stopbadupdate A logical flag that if set TRUE will halt the optimization if the Hessian inverse
cannot be updated after a steepest descent search. This indicates an ill-conditioned Hessian. A
settign of FALSE causes Rvmmin methods to be aggressive in trying to optimize the function,
but may waste effort. Default TRUE.

As of 2011-11-21 the following controls have been REMOVED

usenumDeriv There is now a choice of numerical gradient routines. See argument gr.

Value

A list with components:

par The best set of parameters found.

value The value of the objective at the best set of parameters found.

counts A vector of two integers giving the number of function and gradient evaluations.

convergence An integer indicating the situation on termination of the function. 0 indicates
that the method believes it has succeeded. Other values:

0 indicates successful termination to an acceptable solution
1 indicates that the iteration limit maxit had been reached.
2 indicates that a point with a small gradient norm has been found, which is

likely a solution.
20 indicates that the initial set of parameters is inadmissible, that is, that the

function cannot be computed or returns an infinite, NULL, or NA value.
21 indicates that an intermediate set of parameters is inadmissible.

message A description of the situation on termination of the function.

bdmsk Returned index describing the status of bounds and masks at the proposed solu-
tion. Parameters for which bdmsk are 1 are unconstrained or "free", those with
bdmsk 0 are masked i.e., fixed. For historical reasons, we indicate a parameter
is at a lower bound using -3 or upper bound using -1.

References

Fletcher, R (1970) A New Approach to Variable Metric Algorithms, Computer Journal, 13(3), pp.
317-322.

Nash, J C (1979, 1990) Compact Numerical Methods for Computers: Linear Algebra and Function
Minimisation, Bristol: Adam Hilger. Second Edition, Bristol: Institute of Physics Publications.

74 Rvmmin

See Also

optim

Examples

#####################
All examples for the Rvmmin package are in this .Rd file
##

Rosenbrock Banana function
fr <- function(x) {

x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}

ansrosenbrock <- Rvmmin(fn=fr,gr="grfwd", par=c(1,2))
print(ansrosenbrock)
cat("\n")
cat("No gr specified as a test\n")
ansrosenbrock0 <- Rvmmin(fn=fr, par=c(1,2))
print(ansrosenbrock0)
use print to allow copy to separate file that can be called using source()

#####################
Simple bounds and masks test
#
The function is a sum of squares, but we impose the
constraints so that there are lower and upper bounds
away from zero, and parameter 6 is fixed at the initial
value

bt.f<-function(x){
sum(x*x)

}

bt.g<-function(x){
gg<-2.0*x

}

n<-10
xx<-rep(0,n)
lower<-rep(0,n)
upper<-lower # to get arrays set
bdmsk<-rep(1,n)
bdmsk[(trunc(n/2)+1)]<-0
for (i in 1:n) {

lower[i]<-1.0*(i-1)*(n-1)/n
upper[i]<-1.0*i*(n+1)/n

}
xx<-0.5*(lower+upper)
cat("Initial parameters:")

Rvmmin 75

print(xx)
cat("Lower bounds:")
print(lower)
cat("upper bounds:")
print(upper)
cat("Masked (fixed) parameters:")
print(which(bdmsk == 0))

ansbt<-Rvmmin(xx, bt.f, bt.g, lower, upper, bdmsk, control=list(trace=1))

print(ansbt)

#####################
A version of a generalized Rosenbrock problem
genrose.f<- function(x, gs=NULL){ # objective function

One generalization of the Rosenbrock banana valley function (n parameters)
n <- length(x)
if(is.null(gs)) { gs=100.0 }
fval<-1.0 + sum (gs*(x[1:(n-1)]^2 - x[2:n])^2 + (x[2:n] - 1)^2)
return(fval)

}
genrose.g <- function(x, gs=NULL){

vectorized gradient for genrose.f
Ravi Varadhan 2009-04-03
n <- length(x)
if(is.null(gs)) { gs=100.0 }
gg <- as.vector(rep(0, n))
tn <- 2:n
tn1 <- tn - 1
z1 <- x[tn] - x[tn1]^2
z2 <- 1 - x[tn]
gg[tn] <- 2 * (gs * z1 - z2)
gg[tn1] <- gg[tn1] - 4 * gs * x[tn1] * z1
gg

}

analytic gradient test
xx<-rep(pi,10)
lower<-NULL
upper<-NULL
bdmsk<-NULL
genrosea<-Rvmmin(xx,genrose.f, genrose.g, gs=10)
genrosenf<-Rvmmin(xx,genrose.f, gr="grfwd", gs=10) # use local numerical gradient
genrosenullgr<-Rvmmin(xx,genrose.f, gs=10) # no gradient specified
cat("genrosea uses analytic gradient\n")
print(genrosea)
cat("genrosenf uses grfwd standard numerical gradient\n")
print(genrosenf)
cat("genrosenullgr has no gradient specified\n")
print(genrosenullgr)
cat("Other numerical gradients can be used.\n")

cat("timings B vs U\n")

76 Rvmmin

lo<-rep(-100,10)
up<-rep(100,10)
bdmsk<-rep(1,10)
tb<-system.time(ab<-Rvmminb(xx,genrose.f, genrose.g, lower=lo, upper=up, bdmsk=bdmsk))[1]
tu<-system.time(au<-Rvmminu(xx,genrose.f, genrose.g))[1]
cat("times U=",tu," B=",tb,"\n")
cat("solution Rvmminu\n")
print(au)
cat("solution Rvmminb\n")
print(ab)
cat("diff fu-fb=",au$value-ab$value,"\n")
cat("max abs parameter diff = ", max(abs(au$par-ab$par)),"\n")

Test that Rvmmin will maximize as well as minimize

maxfn<-function(x) {
n<-length(x)
ss<-seq(1,n)
f<-10-(crossprod(x-ss))^2
f<-as.numeric(f)
return(f)

}

negmaxfn<-function(x) {
f<-(-1)*maxfn(x)
return(f)

}

cat("test that maximize=TRUE works correctly\n")

n<-6
xx<-rep(1,n)
ansmax<-Rvmmin(xx,maxfn, gr="grfwd", control=list(maximize=TRUE,trace=1))
print(ansmax)

cat("using the negmax function should give same parameters\n")
ansnegmax<-Rvmmin(xx,negmaxfn, gr="grfwd", control=list(trace=1))
print(ansnegmax)

#####################
cat("test bounds and masks\n")
nn<-4
startx<-rep(pi,nn)
lo<-rep(2,nn)
up<-rep(10,nn)
grbds1<-Rvmmin(startx,genrose.f, genrose.g, lower=lo,upper=up)
print(grbds1)

cat("test lower bound only\n")
nn<-4
startx<-rep(pi,nn)

Rvmmin 77

lo<-rep(2,nn)
grbds2<-Rvmmin(startx,genrose.f, genrose.g, lower=lo)
print(grbds2)

cat("test lower bound single value only\n")
nn<-4
startx<-rep(pi,nn)
lo<-2
up<-rep(10,nn)
grbds3<-Rvmmin(startx,genrose.f, genrose.g, lower=lo)
print(grbds3)

cat("test upper bound only\n")
nn<-4
startx<-rep(pi,nn)
lo<-rep(2,nn)
up<-rep(10,nn)
grbds4<-Rvmmin(startx,genrose.f, genrose.g, upper=up)
print(grbds4)

cat("test upper bound single value only\n")
nn<-4
startx<-rep(pi,nn)
grbds5<-Rvmmin(startx,genrose.f, genrose.g, upper=10)
print(grbds5)

cat("test masks only\n")
nn<-6
bd<-c(1,1,0,0,1,1)
startx<-rep(pi,nn)
grbds6<-Rvmmin(startx,genrose.f, genrose.g, bdmsk=bd)
print(grbds6)

cat("test upper bound on first two elements only\n")
nn<-4
startx<-rep(pi,nn)
upper<-c(10,8, Inf, Inf)
grbds7<-Rvmmin(startx,genrose.f, genrose.g, upper=upper)
print(grbds7)

cat("test lower bound on first two elements only\n")
nn<-4
startx<-rep(0,nn)
lower<-c(0,1.1, -Inf, -Inf)
grbds8<-Rvmmin(startx,genrose.f,genrose.g,lower=lower, control=list(maxit=2000))
print(grbds8)

cat("test n=1 problem using simple squares of parameter\n")

sqtst<-function(xx) {

78 Rvmminb

res<-sum((xx-2)*(xx-2))
}

nn<-1
startx<-rep(0,nn)
onepar<-Rvmmin(startx,sqtst, gr="grfwd", control=list(trace=1))
print(onepar)

cat("Suppress warnings\n")
oneparnw<-Rvmmin(startx,sqtst, gr="grfwd", control=list(dowarn=FALSE,trace=1))
print(oneparnw)

Rvmminb Variable metric nonlinear function minimization with bounds con-
straints

Description

A bounds-constarined R implementation of a variable metric method for minimization of nonlinear
functions subject to bounds (box) constraints and masks (fixed parameters).

See manual Rvmmin.Rd for more details and examples.

Usage

Rvmminb(par, fn, gr, lower, upper, bdmsk, control = list(), ...)

Arguments

par A numeric vector of starting estimates.

fn A function that returns the value of the objective at the supplied set of parameters
par using auxiliary data in The first argument of fn must be par.

gr A function that returns the gradient of the objective at the supplied set of param-
eters par using auxiliary data in The first argument of fn must be par. This
function returns the gradient as a numeric vector.
Note that a gradient function MUST be provided. See the manual for Rvmmin,
which is the usual way Rvmminb is called. The user must take responsibility for
errors if Rvmminb is called directly.

lower A vector of lower bounds on the parameters.

upper A vector of upper bounds on the parameters.

bdmsk An indicator vector, having 1 for each parameter that is "free" or unconstrained,
and 0 for any parameter that is fixed or MASKED for the duration of the opti-
mization.

control An optional list of control settings. See the manual Rvmmin.Rd for details.

... Further arguments to be passed to fn.

Rvmminu 79

Details

This routine is intended to be called from Rvmmin, which will, if necessary, supply a gradient ap-
proximation. However, some users will want to avoid the extra overhead, in which case it is impor-
tant to provide an appropriate and high-accuracy gradient routine.

Note that bounds checking, if it is carried out, is done by Rvmmin.

Functions fn must return a numeric value.

Value

A list with components:

par The best set of parameters found.

value The value of the objective at the best set of parameters found.

counts A vector of two integers giving the number of function and gradient evaluations.

convergence An integer indicating the situation on termination of the function. 0 indicates
that the method believes it has succeeded. Other values:

1 indicates that the iteration limit maxit had been reached.
20 indicates that the initial set of parameters is inadmissible, that is, that the

function cannot be computed or returns an infinite, NULL, or NA value.
21 indicates that an intermediate set of parameters is inadmissible.

message A description of the situation on termination of the function.

bdmsk Returned index describing the status of bounds and masks at the proposed solu-
tion. Parameters for which bdmsk are 1 are unconstrained or "free", those with
bdmsk 0 are masked i.e., fixed. For historical reasons, we indicate a parameter
is at a lower bound using -3 or upper bound using -1.

See Also

optim

Examples

See Rvmmin.Rd

Rvmminu Variable metric nonlinear function minimization, unconstrained

Description

An R implementation of a variable metric method for minimization of unconstrained nonlinear
functions.

See the manual Rvmmin.Rd for details.

80 Rvmminu

Usage

Rvmminu(par, fn, gr, control = list(), ...)

Arguments

par A numeric vector of starting estimates.

fn A function that returns the value of the objective at the supplied set of parameters
par using auxiliary data in The first argument of fn must be par.

gr A function that returns the gradient of the objective at the supplied set of param-
eters par using auxiliary data in The first argument of fn must be par. This
function returns the gradient as a numeric vector.
Note that a gradient function MUST be provided. See the manual for Rvmmin,
which is the usual way Rvmminu is called. The user must take responsibility for
errors if Rvmminu is called directly.

control An optional list of control settings. See the manual Rvmmin.Rd for details.
Some control elements apply only when parameters are bounds constrained and
are not used in this function.

... Further arguments to be passed to fn.

Details

This routine is intended to be called from Rvmmin, which will, if necessary, supply a gradient ap-
proximation. However, some users will want to avoid the extra overhead, in which case it is impor-
tant to provide an appropriate and high-accuracy gradient routine.

Functions fn must return a numeric value.

Value

A list with components:

par The best set of parameters found.

value The value of the objective at the best set of parameters found.

counts A vector of two integers giving the number of function and gradient evaluations.

convergence An integer indicating the situation on termination of the function. 0 indicates
that the method believes it has succeeded. Other values:

1 indicates that the iteration limit maxit had been reached.
20 indicates that the initial set of parameters is inadmissible, that is, that the

function cannot be computed or returns an infinite, NULL, or NA value.
21 indicates that an intermediate set of parameters is inadmissible.

message A description of the situation on termination of the function.

See Also

optim

scalechk 81

Examples

####in Rvmmin.Rd ####

scalechk Check the scale of the initial parameters and bounds input to an opti-
mization code used in nonlinear optimization

Description

Nonlinear optimization problems often have different scale for different parameters. This function
is intended to explore the differences in scale. It is, however, an imperfect and heuristic tool, and
could be improved.

At this time scalechk ignores parameters and bounds for fixed (masked) parameters for calculations
of scaling measures. The rationale for this is that such parameters are outside the optimization
process.

Usage

scalechk(par, lower = lower, upper = upper, bdmsk=NULL, dowarn = TRUE)

Arguments

par A numeric vector of starting values of the optimization function parameters.
lower A vector of lower bounds on the parameters.
upper A vector of upper bounds on the parameters.
bdmsk An indicator vector, having 1 for each parameter that is "free" or unconstrained,

and 0 for any parameter that is fixed or MASKED for the duration of the opti-
mization. May be NULL.

dowarn Set TRUE to issue warnings. Othwerwise this is a silent routine. Default TRUE.

Details

The scalechk function will check that the bounds exist and are admissible, that is, that there are no
lower bounds that exceed upper bounds.

NOTE: Free paramters outside bounds are adjusted to the nearest bound. We then set parchanged =
TRUE which implies the original parameters were infeasible.

Value

A list with components:

Returns: # list(lpratio, lbratio) – the log of the ratio of largest to smallest parameters # and bounds
intervals (upper-lower) in absolute value (ignoring Inf, NULL, NA)

lpratio The log of the ratio of largest to smallest parameters in absolute value (ignoring
Inf, NULL, NA)

lbratio The log of the ratio of largest to smallest bounds intervals (upper-lower) in ab-
solute value (ignoring Inf, NULL, NA)

82 snewton

Examples

#####################
par <- c(-1.2, 1)
lower <- c(-2, 0)
upper <- c(100000, 10)
srat<-scalechk(par, lower, upper,dowarn=TRUE)
print(srat)
sratv<-c(srat$lpratio, srat$lbratio)
if (max(sratv,na.rm=TRUE) > 3) { # scaletol from ctrldefault in optimx

warnstr<-"Parameters or bounds appear to have different scalings.\n
This can cause poor performance in optimization. \n
It is important for derivative free methods like BOBYQA, UOBYQA, NEWUOA."
cat(warnstr,"\n")

}

snewton Safeguarded Newton methods for function minimization using R func-
tions.

Description

These versions of the safeguarded Newton solve the Newton equations with the R function solve().
In snewton a backtracking line search is used, while in snewtonm we rely on a Marquardt stabiliza-
tion.

Usage

snewton(par, fn, gr, hess, control = list(trace=0, maxit=500), ...)

snewtm(par, fn, gr, hess, bds, control = list(trace=0, maxit=500))

Arguments

par A numeric vector of starting estimates.

fn A function that returns the value of the objective at the supplied set of parameters
par using auxiliary data in The first argument of fn must be par.

gr A function that returns the gradient of the objective at the supplied set of param-
eters par using auxiliary data in The first argument of fn must be par. This
function returns the gradient as a numeric vector.

hess A function to compute the Hessian matrix. This should be provided as a square,
symmetric matrix.

bds Result of bmchk() for the current problem. Contains lower and upper etc.

control An optional list of control settings.

... Further arguments to be passed to fn.

snewton 83

Details

snewtm is intended to be called from optimr().

Functions fn must return a numeric value. gr must return a vector. hess must return a matrix. The
control argument is a list. See the code for snewton.R for completeness. Some of the values that
may be important for users are:

trace Set 0 (default) for no output, > 0 for diagnostic output (larger values imply more output).

watch Set TRUE if the routine is to stop for user input (e.g., Enter) after each iteration. Default is
FALSE.

maxit A limit on the number of iterations (default 500 + 2*n where n is the number of parameters).
This is the maximum number of gradient evaluations allowed.

maxfeval A limit on the number of function evaluations allowed (default 3000 + 10*n).

eps a tolerance used for judging small gradient norm (default = 1e-07). a gradient norm smaller
than (1 + abs(fmin))*eps*eps is considered small enough that a local optimum has been found,
where fmin is the current estimate of the minimal function value.

acctol To adjust the acceptable point tolerance (default 0.0001) in the test (f <= fmin + gradproj *
steplength * acctol). This test is used to ensure progress is made at each iteration.

stepdec Step reduction factor for backtrack line search (default 0.2)

defstep Initial stepsize default (default 1)

reltest Additive shift for equality test (default 100.0)

The (unconstrained) solver snewtonmu proved to be slower than the bounded solver called without
bounds, so has been withdrawn.

The snewton safeguarded Newton uses a simple line search but no linear solution stabilization and
has demonstrated POOR performance and reliability. NOT recommended.

Value

A list with components:

par The best set of parameters found.

value The value of the objective at the best set of parameters found.

grad The value of the gradient at the best set of parameters found. A vector.

hessian The value of the Hessian at the best set of parameters found. A matrix.

counts A vector of 4 integers giving number of Newton equation solutions, the number of function
evaluations, the number of gradient evaluations and the number of hessian evaluations.

message A message giving some information on the status of the solution.

References

Nash, J C (1979, 1990) Compact Numerical Methods for Computers: Linear Algebra and Function
Minimisation, Bristol: Adam Hilger. Second Edition, Bristol: Institute of Physics Publications.

See Also

optim

84 snewton

Examples

#Rosenbrock banana valley function
f <- function(x){
return(100*(x[2] - x[1]*x[1])^2 + (1-x[1])^2)
}
#gradient
gr <- function(x){
return(c(-400*x[1]*(x[2] - x[1]*x[1]) - 2*(1-x[1]), 200*(x[2] - x[1]*x[1])))
}
#Hessian
h <- function(x) {
a11 <- 2 - 400*x[2] + 1200*x[1]*x[1]; a21 <- -400*x[1]
return(matrix(c(a11, a21, a21, 200), 2, 2))
}

fg <- function(x){ #function and gradient
val <- f(x)
attr(val,"gradient") <- gr(x)
val

}
fgh <- function(x){ #function and gradient

val <- f(x)
attr(val,"gradient") <- gr(x)
attr(val,"hessian") <- h(x)
val

}

x0 <- c(-1.2, 1)

sr <- snewton(x0, fn=f, gr=gr, hess=h, control=list(trace=1))
print(sr)
Call through optimr to get correct calling sequence, esp. with bounds
srm <- optimr(x0, fn=f, gr=gr, hess=h, control=list(trace=1))
print(srm)

bounds constrained example

lo <- rep((min(x0)-0.1), 2)
up <- rep((max(x0)+0.1), 2)
Call through optimr to get correct calling sequence, esp. with bounds
srmb <- optimr(x0, fn=f, gr=gr, hess=h, lower=lo, upper=up, control=list(trace=1))
proptimr(srmb)

#Example 2: Wood function
#
wood.f <- function(x){

res <- 100*(x[1]^2-x[2])^2+(1-x[1])^2+90*(x[3]^2-x[4])^2+(1-x[3])^2+
10.1*((1-x[2])^2+(1-x[4])^2)+19.8*(1-x[2])*(1-x[4])

return(res)
}
#gradient:

summary.optimx 85

wood.g <- function(x){
g1 <- 400*x[1]^3-400*x[1]*x[2]+2*x[1]-2
g2 <- -200*x[1]^2+220.2*x[2]+19.8*x[4]-40
g3 <- 360*x[3]^3-360*x[3]*x[4]+2*x[3]-2
g4 <- -180*x[3]^2+200.2*x[4]+19.8*x[2]-40
return(c(g1,g2,g3,g4))

}
#hessian:
wood.h <- function(x){

h11 <- 1200*x[1]^2-400*x[2]+2; h12 <- -400*x[1]; h13 <- h14 <- 0
h22 <- 220.2; h23 <- 0; h24 <- 19.8
h33 <- 1080*x[3]^2-360*x[4]+2; h34 <- -360*x[3]
h44 <- 200.2
H <- matrix(c(h11,h12,h13,h14,h12,h22,h23,h24,

h13,h23,h33,h34,h14,h24,h34,h44),ncol=4)
return(H)

}
###
w0 <- c(-3, -1, -3, -1)

wd <- snewton(w0, fn=wood.f, gr=wood.g, hess=wood.h, control=list(trace=1))
print(wd)

Call through optimr to get correct calling sequence, esp. with bounds
wdm <- optimr(w0, fn=wood.f, gr=wood.g, hess=wood.h, control=list(trace=1))
print(wdm)

summary.optimx Summarize optimx object

Description

Summarize an "optimx" object.

Usage

S3 method for class 'optimx'
summary(object, order = NULL, par.select = TRUE, ...)

Arguments

object Object returned by optimx.

order A column name, character vector of columns names, R expression in terms of
column names or a list of R expressions in terms of column names. NULL, the
default, means no re-ordering. rownames can be used to alphabetic ordering
by method name. NULL, the default, causes it not to be reordered. Note that if
follow.on is TRUE re-ordering likely makes no sense. The result is ordered by

86 tn

the order specification, each specified column in ascending order (except for
value which is in descending order if the optimization problem is a maximiza-
tion problem).

par.select a numeric, character or logical vector selecting those par values to display.
For example, par=1:5 means display only the first 5 parameters. Recycled so
par.select=FALSE selects no parameters.

... Further arguments to be passed to the function. Currently not used.

Details

If order is specified then the result is reordered by the specified columns, each in ascending order
(except possibly for the value column which is re-ordered in descending order for maximization
problems).

Value

summary.optimx returns object with the rows ordered according to order and with those param-
eters selected by par.select.

Examples

ans <- optimx(fn = function(x) sum(x*x), par = 1:2)

order by method name.
summary(ans, order = rownames)

order by objective value. Do not show parameter values.
summary(ans, order = value, par.select = FALSE)

order by objective value and then number of function evaluations
such that objectives that are the same to 3 decimals are
considered the same. Show only first parameter.
summary(ans, order = list(round(value, 3), fevals), par.select = 1)

tn Truncated Newton minimization of an unconstrained function.

Description

An R implementation of the Truncated Newton method of Stephen Nash for driver to call the un-
constrained function minimization. The algorithm is based on Nash (1979)

This set of codes is entirely in R to allow users to explore and understand the method.

Usage

tn(x, fgfun, trace, ...)

tn 87

Arguments

x A numeric vector of starting estimates.

fgfun A function that returns the value of the objective at the supplied set of parameters
par using auxiliary data in The gradient is returned as attribute "gradient".
The first argument of fgfun must be par.

trace > 0 if progress output is to be presented.

... Further arguments to be passed to fn.

Details

Function fgfun must return a numeric value in list item f and a numeric vector in list item g.

Value

A list with components:

xstar The best set of parameters found.

f The value of the objective at the best set of parameters found.

g The gradient of the objective at the best set of parameters found.

ierror An integer indicating the situation on termination. 0 indicates that the method
believes it has succeeded; 2 that more than maxfun (default 150*n, where there
are n parameters); 3 if the line search appears to have failed (which may not be
serious); and -1 if there appears to be an error in the input parameters.

nfngr A number giving a measure of how many conjugate gradient solutions were used
during the minimization process.

References

Stephen G. Nash (1984) "Newton-type minimization via the Lanczos method", SIAM J Numerical
Analysis, vol. 21, no. 4, pages 770-788.

For Matlab code, see http://www.netlib.org/opt/tn

See Also

optim

Examples

#####################
All examples are in this .Rd file
##
Rosenbrock Banana function
fr <- function(x) {

x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}
gr <- function(x) {

88 tn

x1 <- x[1]
x2 <- x[2]
g1 <- -400 * (x2 - x1*x1) * x1 - 2*(1-x1)
g2 <- 200*(x2 - x1*x1)
gg<-c(g1, g2)

}

rosefg<-function(x){
f<-fr(x)
g<-gr(x)
attr(f, "gradient") <- g
f

}

x<-c(-1.2, 1)

ansrosenbrock <- tn(x, rosefg)
print(ansrosenbrock) # use print to allow copy to separate file that
cat("Compare to optim\n")
ansoptrose <- optim(x, fr, gr)
print(ansoptrose)

genrose.f<- function(x, gs=NULL){ # objective function
One generalization of the Rosenbrock banana valley function (n parameters)
n <- length(x)

if(is.null(gs)) { gs=100.0 }
fval<-1.0 + sum (gs*(x[1:(n-1)]^2 - x[2:n])^2 + (x[2:n] - 1)^2)

return(fval)
}
genrose.g <- function(x, gs=NULL){
vectorized gradient for genrose.f
Ravi Varadhan 2009-04-03
n <- length(x)

if(is.null(gs)) { gs=100.0 }
gg <- as.vector(rep(0, n))
tn <- 2:n
tn1 <- tn - 1
z1 <- x[tn] - x[tn1]^2
z2 <- 1 - x[tn]
gg[tn] <- 2 * (gs * z1 - z2)
gg[tn1] <- gg[tn1] - 4 * gs * x[tn1] * z1
gg

}

grosefg<-function(x, gs=100.0) {
f<-genrose.f(x, gs)
g<-genrose.g(x, gs)
attr(f, "gradient") <- g
f

}

n <- 100

tnbc 89

x <- (1:100)/20
groseu<-tn(x, grosefg, gs=10)
print(groseu)

groseuo <- optim(x, fn=genrose.f, gr=genrose.g, method="BFGS",
control=list(maxit=1000), gs=10)

cat("compare optim BFGS\n")
print(groseuo)

lower<-1+(1:n)/100
upper<-5-(1:n)/100
xmid<-0.5*(lower+upper)

grosec<-tnbc(xmid, grosefg, lower, upper)
print(grosec)

cat("compare L-BFGS-B\n")
grosecl <- optim(par=xmid, fn=genrose.f, gr=genrose.g,

lower=lower, upper=upper, method="L-BFGS-B")
print(grosecl)

tnbc Truncated Newton function minimization with bounds constraints

Description

A bounds-constarined R implementation of a truncated Newton method for minimization of non-
linear functions subject to bounds (box) constraints.

Usage

tnbc(x, fgfun, lower, upper, trace=0, ...)

Arguments

x A numeric vector of starting estimates.

fgfun A function that returns the value of the objective at the supplied set of parameters
par using auxiliary data in The gradient is returned as attribute "gradient".
The first argument of fgfun must be par.

lower A vector of lower bounds on the parameters.

upper A vector of upper bounds on the parameters.

trace Set >0 to cause intermediate output to allow progress to be followed.

... Further arguments to be passed to fn.

90 tnbc

Details

Function fgfun must return a numeric value in list item f and a numeric vector in list item g.

Value

A list with components:

xstar The best set of parameters found.

f The value of the objective at the best set of parameters found.

g The gradient of the objective at the best set of parameters found.

ierror An integer indicating the situation on termination. 0 indicates that the method
believes it has succeeded; 2 that more than maxfun (default 150*n, where there
are n parameters); 3 if the line search appears to have failed (which may not be
serious); and -1 if there appears to be an error in the input parameters.

nfngr A number giving a measure of how many conjugate gradient solutions were used
during the minimization process.

References

Stephen G. Nash (1984) "Newton-type minimization via the Lanczos method", SIAM J Numerical
Analysis, vol. 21, no. 4, pages 770-788.

For Matlab code, see http://www.netlib.org/opt/tn

See Also

optim

Examples

See tn.Rd

Index

∗ axial
axsearch, 5

∗ bound
bmchk, 7
bmstep, 10
scalechk, 81

∗ lower
bmchk, 7
bmstep, 10
scalechk, 81

∗ mask
bmchk, 7
bmstep, 10
scalechk, 81

∗ maximization
checksolver, 11
coef, 12
ctrldefault, 13
grnd, 27
grpracma, 28
kktchk, 33
multistart, 35
opm, 37
opm2optimr, 43
optchk, 44
optimr, 46
optimx, 50
polyopt, 57
summary.optimx, 85

∗ minimization
checksolver, 11
coef, 12
ctrldefault, 13
grnd, 27
grpracma, 28
kktchk, 33
multistart, 35
opm, 37
opm2optimr, 43

optchk, 44
optimr, 46
optimx, 50
polyopt, 57
summary.optimx, 85

∗ nonlinear
axsearch, 5
bmchk, 7
bmstep, 10
checksolver, 11
coef, 12
ctrldefault, 13
gHgen, 15
gHgenb, 18
grnd, 27
grpracma, 28
hjn, 31
kktchk, 33
multistart, 35
opm, 37
opm2optimr, 43
optchk, 44
optimr, 46
optimx, 50
polyopt, 57
Rcgmin, 60
Rcgminb, 67
Rcgminu, 69
Rvmmin, 71
Rvmminb, 78
Rvmminu, 79
scalechk, 81
snewton, 82
summary.optimx, 85
tn, 86
tnbc, 89

∗ optimization
optimx-package, 3

∗ optimize

91

92 INDEX

axsearch, 5
bmchk, 7
bmstep, 10
checksolver, 11
coef, 12
ctrldefault, 13
fnchk, 13
gHgen, 15
gHgenb, 18
grback, 21
grcentral, 23
grchk, 24
grfwd, 26
grnd, 27
grpracma, 28
hesschk, 29
hjn, 31
kktchk, 33
multistart, 35
opm, 37
opm2optimr, 43
optchk, 44
optimr, 46
optimx, 50
polyopt, 57
proptimr, 60
Rcgmin, 60
Rcgminb, 67
Rcgminu, 69
Rvmmin, 71
Rvmminb, 78
Rvmminu, 79
scalechk, 81
snewton, 82
summary.optimx, 85
tn, 86
tnbc, 89

∗ package
optimx-package, 3

∗ search
axsearch, 5

∗ upper
bmchk, 7
bmstep, 10
scalechk, 81

[.optimx (optimx), 50

as.data.frame.optimx (optimx), 50
axsearch, 5

bmchk, 7
bmstep, 10
bobyqa, 42, 56

checkallsolvers (checksolver), 11
checksolver, 11
coef, 12
coef.optimx, 54
coef<- (coef), 12
constrOptim, 42, 56
ctrldefault, 13

dispdefault (ctrldefault), 13

fnchk, 13

gHgen, 15
gHgenb, 18
grback, 21
grcentral, 23
grchk, 24
grfwd, 26
grnd, 27
grpracma, 28

hesschk, 29
hjkb, 42, 56
hjn, 31

kktchk, 33

multistart, 35

ncg (Rcgmin), 60
ncgqs (Rcgmin), 60
nlm, 42, 56
nlminb, 42, 56
nmkb, 42, 56
nvm (Rvmmin), 71

opm, 37
opm2optimr, 43
optchk, 44
optim, 32, 34, 63, 69, 70, 74, 79, 80, 83, 87, 90
optimize, 41, 42, 55, 56
optimr, 46
optimx, 3, 50
optimx-package, 3
optsp (grfwd), 26

polyopt, 57

INDEX 93

proptimr, 60

Rcgmin, 60
Rcgminb, 67
Rcgminu, 69
Rvmmin, 71
Rvmminb, 78
Rvmminu, 79

scalechk, 81
snewtm (snewton), 82
snewton, 82
spg, 42, 56
summary.optimx, 54, 85

tn, 86
tnbc, 89

ucminf, 42, 56

	optimx-package
	axsearch
	bmchk
	bmstep
	checksolver
	coef
	ctrldefault
	fnchk
	gHgen
	gHgenb
	grback
	grcentral
	grchk
	grfwd
	grnd
	grpracma
	hesschk
	hjn
	kktchk
	multistart
	opm
	opm2optimr
	optchk
	optimr
	optimx
	polyopt
	proptimr
	Rcgmin
	Rcgminb
	Rcgminu
	Rvmmin
	Rvmminb
	Rvmminu
	scalechk
	snewton
	summary.optimx
	tn
	tnbc
	Index

