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R has several tools for estimating nonlinear models and minimizing sums of squares functions. The base
R distribution includes a function nls() that is feature-rich but has some annoying weaknesses (Nash and
Bhattacharjee (2022)). Some of these are addressed in the package nlsr (John C Nash and Duncan Murdoch
(2019)), for which this vignette provides an introduction with examples.

What does nlsr do?
nlsr has functions to find a set of parameters that minimizes the sum of squares (or deviance) of differences
between a model specified either as a formula using function nlxb() or as both residual and Jacobian R
functions using function nlfb(). As described below, the Jacobian may be approximated by particular
control settings.

Existing R tools that are similar to nlxb() are nls() and minpack.lm::nlsLM();
minpack.lm::nls.lm() is similar to nlfb().

There are several important differences in approach and results, some of which are detailed in this document.

Output object

The output object of nlxb() is smaller than that of nls() and is focused on the solution and its properties
rather than the modeling task. That is, package nlsr emphasizes the solution of the nonlinear least squares
problem rather than the estimation of a nonlinear model that fits or explains the data. nls() and nlsLM
return an object of class nls, which allows for a number of specialized modeling and diagnostic extensions.
For compatibility, the nlsr package has function wrapnlsr(), for which nlsr() is an alias. This uses nlxb()
to find good parameters, then calls nls() to return the class nls object. Unless particular modeling features
are needed, the use of wrapnlsr() is unnecessary and wasteful of resources.

Jacobian calculation

Internally, nlxb() uses symbolic and automatic differentiation tools to create the residual and Jacobian
functions needed for nlfb() then uses it to solve the relevant nonlinear least squares minimization problem.

As with other nonlinear least squares packages, we provide the Jacobian code as the “gradient” attribute
of the Jacobian function. This lets us embed the code for the Jacobian as this attribute of the residual
function so that the call to nlfb() can be made with the same name used for both residual and Jacobian
function arguments. This programming trick saves a lot of trouble for the package developer, but it can be a
nuisance for users trying to understand the code.

Generally nls() and nlsLM() use a fairly simple forward difference approximation of derivatives for the
Jacobian, though a central approximation can be specified in control parameters. Package nlsr provides four
approximation options, with a further control ndstep for the size of the step used in the approximation.

Stabilization of Gauss-Newton computations

The iteration in all the major tools mentioned is the solution of the Gauss-Newton equations. nls() uses a
variant of an approach suggested by Hartley (1961), while nlsr and minpack.lm use variants of the method
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published by Marquardt (1963), though it was suggested earlier by Levenberg (1944). The details of the
method in nlsr are discussed in Nash and Bhattacharjee (2022). Though it is unlikely to be useful in
general, control settings for nlxb() or nlfb() allow for those routines to perform a variety of Hartley and
Marquardt algorithms. This has been useful for learning about the algorithms, but tangential to simply
finding parameters of nonlinear models.

In general, the Levenberg-Marquardt stabilization is important in obtaining solutions. The default method of
nls() terminates with singular gradient unnecessarily in too many instances.

Programming language

An important choice made in developing nlsr was to code entirely within the R programming language.
nls() uses a mix of R, C and Fortran, as does minpack.lm. Generally, I believe that keeping to a single
programming language allows for easier maintenance and upgrades. On the other hand, R is usually somewhat
slower in performing computations because it keeps track of names and structures and because it is usually
interpreted rather than compiled. In recent years the performance penalty for using code entirely in R has
been much reduced with the just-in-time compiler and other improvements, so that using an all-R package
offers acceptable performance. Indeed, in nlsr the use of R may be less of a performance cost than the
attempt to ensure the solution has been found, which forces more iterations to be used.

An illustrative example
The Hobbs weed infestation problem (Nash (1979, 120)) is a growth curve modeling task which is seemingly
straightforward but turns out to be quite nasty.

The data and a graph of it is given below.
weed <- c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443,

38.558, 50.156, 62.948, 75.995, 91.972)
tt <- 1:12
weeddf <- data.frame(tt, weed)
plot(weeddf, main="Hobbs weed infestation data")
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Most nonlinear least squares problems encountered by R users have data, but it is not strictly required, as
we shall see below in the section on functional specification of nonlinear least squares problems. What is
required is a definition of the (residual) functions that are to be squared and then their squares summed
to provide the loss function or objective function to be minimized by adjusting the parameters that
define the set of functions. In the case of the Hobbs problem, I was told the scientists who collected the data
believe that the growth of weeds followed a 3-parameter logistic sigmoid growth curve where y (the weed
data) changes with time (t) (the tt index) according to the function

Logistic3U:
y ≈ b1/(1 + b2 ∗ exp(−b3 ∗ t))

The problem (using the 3 parameter logistic form above) has very bad scaling and regions in the parameter
space where the sum of squares objective is nearly “flat”, so that its Hessian, or matrix of second derivatives,
is almost singular. When this occurs, methods cannot easily make progress towards the optimal solution.

Solution methods also need an initial guess for the parameters to be adjusted. There are often some ways to
provide such initial parameters, though in my experience they take quite a lot of work to set up reliably,
but R does have some worthwhile possibilities in some, though not all, of the selfStart modelling functions,
especially those in the package nlraa (Miguez (2021)).

There are, however, alternatives to the model above. For example, a simple scaling can make the solution to
the problem easier to find, such as

Logistic3S:
y ≈ 100 ∗ c1/(1 + 10 ∗ c2 ∗ exp(−0.1 ∗ c3 ∗ t))

Another form is

Logistic3T:
y ≈ Asym/(1 + exp((xmid − t)/scal))

The functions above are equivalent. Their parameters are related as follows:

Asym = b1 = 100 ∗ c1

exp(xmid/scal) = b2 = 10 ∗ c2

1/scal = b3

nlsr tries to find solutions from very poor initial parameter values. While this is not always possible, nslr
has generally been able to succeed in finding solutions, even when all parameters are started at 1. Let us
compare its results with those of nls() and nlsLM().

Problem setup

# model formulas
frmu <- weed ~ b1/(1+b2*exp(-b3*tt))
frms <- weed ~ 100*c1/(1+10*c2*exp(-0.1*c3*tt))
frmt <- weed ~ Asym /(1 + exp((xmid-tt)/scal))
#
# Starting parameter sets
stu1<-c(b1=1, b2=1, b3=1)
sts1<-c(c1=1, c2=1, c3=1)
stt1<-c(Asym=1, xmid=1, scal=1)

Solution attempts with nls()
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unls1<-try(nls(formula=frmu, start=stu1, data=weeddf))

## Error in nls(formula = frmu, start = stu1, data = weeddf) :
## singular gradient
summary(unls1)

## Length Class Mode
## 1 try-error character
snls1<-try(nls(formula=frms, start=sts1, data=weeddf))

## Error in nls(formula = frms, start = sts1, data = weeddf) :
## singular gradient
summary(snls1)

## Length Class Mode
## 1 try-error character
tnls1<-try(nls(formula=frmt, start=stt1, data=weeddf))

## Error in nls(formula = frmt, start = stt1, data = weeddf) :
## singular gradient
summary(tnls1)

## Length Class Mode
## 1 try-error character
cat("\n")

Solution attempts with nlsr tools

library(nlsr)
unlx1<-try(nlxb(formula=frmu, start=stu1, data=weeddf))
print(unlx1)

## residual sumsquares = 2.5873 on 12 observations
## after 19 Jacobian and 25 function evaluations
## name coeff SE tstat pval gradient JSingval
## b1 196.186 11.31 17.35 3.167e-08 -4.859e-09 1011
## b2 49.0916 1.688 29.08 3.284e-10 -3.099e-08 0.4605
## b3 0.31357 0.006863 45.69 5.768e-12 2.305e-06 0.04714
pshort(unlx1) # A short form output

## unlx1 -- ss= 2.5873 : b1 = 196.19 b2 = 49.092 b3 = 0.31357; 25 res/ 19 jac
snlx1<-try(nlxb(formula=frms, start=sts1, data=weeddf))
# pshort(snlx1)
print(snlx1)

## residual sumsquares = 2.5873 on 12 observations
## after 23 Jacobian and 34 function evaluations
## name coeff SE tstat pval gradient JSingval
## c1 1.96186 0.1131 17.35 3.167e-08 7.809e-08 130.1
## c2 4.90916 0.1688 29.08 3.284e-10 3.578e-07 6.165
## c3 3.1357 0.06863 45.69 5.768e-12 -3.459e-07 2.735
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tnlx1<-try(nlxb(formula=frmt, start=stt1, data=weeddf))
# pshort(tnlx1)
print(tnlx1)

## residual sumsquares = 2.5873 on 12 observations
## after 27 Jacobian and 36 function evaluations
## name coeff SE tstat pval gradient JSingval
## Asym 196.186 11.31 17.35 3.167e-08 -3.432e-10 44.93
## xmid 12.4173 0.3346 37.11 3.716e-11 -5.273e-08 15.6
## scal 3.18908 0.0698 45.69 5.768e-12 1.752e-07 0.0474
ct<-as.list(tnlx1$coefficients) # Need a list to use ct$... in next line
cat("exp(xmid/scal)=",exp(ct$xmid/ct$scal),"\n")

## exp(xmid/scal)= 49.092
cat("\n")

# explicit residuals (weighted if there are weights)
rtnlx1<-residuals(tnlx1)
print(rtnlx1)

## [1] 0.011900 -0.032755 0.092030 0.208782 0.392634 -0.057594 -1.105728
## [8] 0.715786 -0.107648 -0.348396 0.652593 -0.287568
## attr(,"gradient")
## Asym xmid scal
## [1,] 0.027117 -1.6229 5.8103
## [2,] 0.036737 -2.1769 7.1111
## [3,] 0.049596 -2.8997 8.5628
## [4,] 0.066645 -3.8266 10.1000
## [5,] 0.089005 -4.9881 11.6015
## [6,] 0.117921 -6.3988 12.8762
## [7,] 0.154635 -8.0418 13.6607
## [8,] 0.200186 -9.8498 13.6432
## [9,] 0.255106 -11.6901 12.5267
## [10,] 0.319083 -13.3660 10.1313
## [11,] 0.390688 -14.6444 6.5083
## [12,] 0.467334 -15.3139 2.0039
cat("explicit sumsquares =", sum(rtnlx1ˆ2),"\n")

## explicit sumsquares = 2.5873

Solution attempts with minpack.lm

NOTE: The original version of this vignette passed all package checks for Linux, Windows and (Intel-based)
Macintosh computers, but failed on Macintosh machines using the M1 chip.
library(minpack.lm)
unlm1<-try(nlsLM(formula=frmu, start=stu1, data=weeddf))
summary(unlm1) # Use summary() to get display

##
## Formula: weed ~ b1/(1 + b2 * exp(-b3 * tt))
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
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## b1 1.96e+02 1.13e+01 17.4 3.2e-08 ***
## b2 4.91e+01 1.69e+00 29.1 3.3e-10 ***
## b3 3.14e-01 6.86e-03 45.7 5.8e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.536 on 9 degrees of freedom
##
## Number of iterations to convergence: 17
## Achieved convergence tolerance: 1.49e-08
unlm1 # Note the difference. Use this form to get sum of squares

## Nonlinear regression model
## model: weed ~ b1/(1 + b2 * exp(-b3 * tt))
## data: weeddf
## b1 b2 b3
## 196.186 49.092 0.314
## residual sum-of-squares: 2.59
##
## Number of iterations to convergence: 17
## Achieved convergence tolerance: 1.49e-08
# pnls(unlm1) # Short form of output
snlm1<-try(nlsLM(formula=frms, start=sts1, data=weeddf))
# pnls(snlm1)
summary(snlm1)

##
## Formula: weed ~ 100 * c1/(1 + 10 * c2 * exp(-0.1 * c3 * tt))
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## c1 1.9619 0.1131 17.4 3.2e-08 ***
## c2 4.9092 0.1688 29.1 3.3e-10 ***
## c3 3.1357 0.0686 45.7 5.8e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.536 on 9 degrees of freedom
##
## Number of iterations to convergence: 7
## Achieved convergence tolerance: 1.49e-08
tnlm1<-try(nlsLM(formula=frmt, start=stt1, data=weeddf))
if (inherits(tnlm1, "try-error")) {

cat("Failure to compute solution -- likely singular Jacobian\n")
} else {

pnls(tnlm1) # short form to give sum of squares
summary(tnlm1)

}

## tnlm1 -- ss= 9205.4 : Asym = 35.532 xmid = 43376 scal = -2935.4; 39 itns

##
## Formula: weed ~ Asym/(1 + exp((xmid - tt)/scal))
##
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## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## Asym 3.55e+01 7.91e+03 0 1
## xmid 4.34e+04 3.56e+12 0 1
## scal -2.94e+03 2.06e+11 0 1
##
## Residual standard error: 32 on 9 degrees of freedom
##
## Number of iterations to convergence: 39
## Achieved convergence tolerance: 1.49e-08

Solution attempts with wrapnlsr() wrapper

## Try the wrapper. Calling wrapnlsr() instead of nlsr() is equivalent
##
unlw1<-try(nlsr(formula=frmu, start=stu1, data=weeddf))
print(unlw1) # using 'unlx1' gives name of object as 'x' only

## Nonlinear regression model
## model: weed ~ b1/(1 + b2 * exp(-b3 * tt))
## data: structure(list(tt = 1:12, weed = c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443, 38.558, 50.156, 62.948, 75.995, 91.972)), class = "data.frame", row.names = c(NA, -12L))
## b1 b2 b3
## 196.186 49.092 0.314
## residual sum-of-squares: 2.59
##
## Number of iterations to convergence: 0
## Achieved convergence tolerance: 2.03e-08
snlw1<-try(nlsr(formula=frms, start=sts1, data=weeddf))
# pshort(snlx1)
print(snlw1)

## Nonlinear regression model
## model: weed ~ 100 * c1/(1 + 10 * c2 * exp(-0.1 * c3 * tt))
## data: structure(list(tt = 1:12, weed = c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443, 38.558, 50.156, 62.948, 75.995, 91.972)), class = "data.frame", row.names = c(NA, -12L))
## c1 c2 c3
## 1.96 4.91 3.14
## residual sum-of-squares: 2.59
##
## Number of iterations to convergence: 0
## Achieved convergence tolerance: 7.03e-08
tnlw1<-try(nlsr(formula=frmt, start=stt1, data=weeddf))
print(tnlw1)

## Nonlinear regression model
## model: weed ~ Asym/(1 + exp((xmid - tt)/scal))
## data: structure(list(tt = 1:12, weed = c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443, 38.558, 50.156, 62.948, 75.995, 91.972)), class = "data.frame", row.names = c(NA, -12L))
## Asym xmid scal
## 196.19 12.42 3.19
## residual sum-of-squares: 2.59
##
## Number of iterations to convergence: 0
## Achieved convergence tolerance: 6.35e-09
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Commentary

There are several details that may be important for users.

• nlsr is set up to use print() to output standard errors and singular values of the Jacobian (for
diagnostic purposes). By contrast, minpack.lm and nls() use summary(), which does NOT display
the sum of squares, while print() gives the sum of squares, but not the standard errors.

• The singular values displayed by print.nlsr() (the internal name for the adaptation of the generic
print()) are displayed in a column to the right of the coefficient and standard error display, but are
NOT specific to the parameters. Their position is purely for efficient use of page space.

• The most common use of the singular values is to gauge how “nearly singular” the Jacobian is at the
solution, and the ratio of the largest to smallest of the singular values is a simple but effective measure.
In the above example, we note that the scaled logistic has the smallest ratio.

• The result from nlsLM for the transformed model has a very large sum of squares, which may suggest
that the program has failed. Since neither nls() nor nlsLM() offer the singular values, we can “cheat”
and use nlxb(), though the Jacobian used will be the analytic one used by this last program rather
than the forward difference approximation that is generally used by the others.

stspecial<- c(Asym = 35.532, xmid = 43376, scal = -2935.4)
# force to exit at once by setting femax to 1 (maximum number of sum of squares evaluations)
getsvs<-nlxb(formula=frmt, start=stspecial, data=weeddf, control=list(femax=1))
print(getsvs)

## residual sumsquares = 9205.4 on 12 observations
## after 1 Jacobian and 2 function evaluations
## name coeff SE tstat pval gradient JSingval
## Asym 35.5321 NA NA NA -9.694e-09 3.464
## xmid 43376 NA NA NA -1.742e-09 2.61e-10
## scal -2935.4 NA NA NA -2.4e-08 7.12e-16

• The trick used above to get singular values is convenient, but it is actually quite easy to get the Jacobian
from a class nls object such as tnlm1 as follows.

if (inherits(tnlm1, "try-error")) {
cat("Cannot compute solution -- likely singular Jacobian\n")

} else {
Jtm <- tnlm1$m$gradient()
svd(Jtm)$d # Singular values

}

We see that there are differences in detail, but the more important result is that two out of three singular
values are essentially 0. Our Jacobian is singular, and no method of the Gauss-Newton type should be able
to continue. Indeed, from this set of parameters, nlxb also stops.
stspecial<- c(Asym = 35.532, xmid = 43376, scal = -2935.4)
# force to exit at once by setting femax to 1 (maximum number of sum of squares evaluations)
badstart<-nlxb(formula=frmt, start=stspecial, data=weeddf)
print(badstart)

## residual sumsquares = 9205.4 on 12 observations
## after 2 Jacobian and 2 function evaluations
## name coeff SE tstat pval gradient JSingval
## Asym 35.5321 NA NA NA -9.694e-09 3.464
## xmid 43376 NA NA NA -1.742e-09 2.61e-10
## scal -2935.4 NA NA NA -2.4e-08 7.12e-16
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Extracting standard errors from nlsr solutions

While it is straightforward to display coefficients of models with their standard errors (SE) and related
statistics by printing the solution, some users may need to be able to save and use the quantities, for example,
in particular presentations of them. A query from Rohana Ambagaspitiya of the University of Calgary
prompted me to explain how to do this, as the SE’s and related quantities are not in the output of nlxb() or
nlfb(), but are computed in the summary() and print() functions. Saving the SE of the Asym coefficient in
the tnlx1 solution above is illustrated.
ssum<-summary(tnlx1)
str(ssum)

## List of 14
## $ residuals : num [1:12] 0.0119 -0.0328 0.092 0.2088 0.3926 ...
## ..- attr(*, "gradient")= num [1:12, 1:3] 0.0271 0.0367 0.0496 0.0666 0.089 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : NULL
## .. .. ..$ : chr [1:3] "Asym" "xmid" "scal"
## $ sigma : num 0.536
## $ df : int [1:2] 3 9
## $ cov.unscaled: num [1:3, 1:3] 444.723 13.119 2.571 13.119 0.389 ...
## $ param : num [1:3, 1:4] 196.186 12.417 3.189 11.307 0.335 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:3] "Asym" "xmid" "scal"
## .. ..$ : chr [1:4] "Estimate" "Std. Error" "t value" "Pr(>|t|)"
## $ resname : chr "tnlx1"
## $ ssquares : num 2.59
## $ nobs : int 12
## $ ct : chr [1:3] " " " " " "
## $ mt : chr [1:3] " " " " " "
## $ Sd : num [1:3] 44.9256 15.5972 0.0474
## $ gr : num [1:3, 1] -3.43e-10 -5.27e-08 1.75e-07
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:3] "Asym" "xmid" "scal"
## .. ..$ : NULL
## $ jeval : num 27
## $ feval : num 36
## - attr(*, "class")= chr "nlsr"
AsymSE<-ssum$param[1,2]
AsymSE

## [1] 11.307

selfStart options
The form of the logistic given by frmt is available as a selfStart model, needing no starting parameters with
nls(). The code is in base R in location src/library/stats/R/zzModels.R.
frmtss <- weed ~ SSlogis(tt, Asym, xmid, scal)
ssts1<-nls(formula=frmtss, data=weeddf)
summary(ssts1)

##
## Formula: weed ~ SSlogis(tt, Asym, xmid, scal)
##
## Parameters:
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## Estimate Std. Error t value Pr(>|t|)
## Asym 196.1862 11.3069 17.4 3.2e-08 ***
## xmid 12.4173 0.3346 37.1 3.7e-11 ***
## scal 3.1891 0.0698 45.7 5.8e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.536 on 9 degrees of freedom
##
## Number of iterations to convergence: 0
## Achieved convergence tolerance: 1.12e-06
require(minpack.lm)
sstm1<-nlsLM(formula=frmtss, data=weeddf)
summary(sstm1)

##
## Formula: weed ~ SSlogis(tt, Asym, xmid, scal)
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## Asym 196.1863 11.3069 17.4 3.2e-08 ***
## xmid 12.4173 0.3346 37.1 3.7e-11 ***
## scal 3.1891 0.0698 45.7 5.8e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.536 on 9 degrees of freedom
##
## Number of iterations to convergence: 1
## Achieved convergence tolerance: 1.49e-08

The essence of selfStart models is to provide starting parameters for the iterative methods used to find the
final parameters. However, an examination of the code for the SSlogis() function shows that it makes use
of a DIFFERENT solver and returns the final results of that solver. The computational effort in doing this
is, I believe, greater than that expended by nlxb() from an extremely crude start (all 1’s). An alternative
selfStart for this version of the logistic is included in package nlsr as SSlogisJN.R.

Users should be aware that the programming of selfStart models involves quite esoteric aspects of R which I
find prone to errors and difficult to grasp easily. Developers who have built them for us deserve our thanks.
A particularly important collection of such tools is in the package Miguez (2021).

SSlogisJN.R for the 3-parameter logistic

SSlogisJN.R uses ideas for selfStart from Ratkowsky (1983) for the Logistic3T form of the model. It produces
only an approximate set of starting parameters, unlike SSlogis.R. The core of the idea is as follows, where
we use the abbreviated output function to save page space.
Asymt <- 2*max(weed)
Asymt

## [1] 183.94
pw <- Asymt/weed
pw1<-pw-1
lpw1<-log(pw1)
clin <- coef(lm(lpw1~tt))
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clin<-as.list(clin)
scalt <- -1/clin$tt
scalt

## [1] 3.1356
xmidt <- scalt*as.numeric(clin[1])
xmidt

## [1] 12.066
library(nlsr)
try1<-nlxb(frmt, data=weeddf, start=c(Asym=1, xmid=1, scal=1))
pshort(try1)

## try1 -- ss= 2.5873 : Asym = 196.19 xmid = 12.417 scal = 3.1891; 36 res/ 27 jac
try2<-nlxb(frmt, data=weeddf, start=c(Asym=Asymt, xmid=xmidt, scal=scalt))
pshort(try2)

## try2 -- ss= 2.5873 : Asym = 196.19 xmid = 12.417 scal = 3.1891; 5 res/ 5 jac

We see a dramatic reduction in the computational effort as measured by residual and Jacobian evaluations.

Running selfStart models with nlxb()

There are two important steps in using selfStart models with nlxb():

• we must provide the starting parameters explicitly to nlxb(), which seems counter to the goal of
selfStart models. However, we use function getInitial() to exploit particular selfStart modeling
functions.

• we must point to a mechanism to compute the Jacobian, since the selfStart function is unlikely to be
in the derivatives table of analytic or automatic derivatives. Note that Jacobian (“gradient”) code is
generally part of selfStart functions. If code is included for the analytic Jacobian, it is likely worth
using. However, because it is easy to make errors in coding derivatives, it may also be worth checking
results of such code, for example, using tools from package numDeriv. I have made more such errors
over my career than I like to admit.

These steps can be automated, and this has been carried out in function nlsrSS(). The automation is built
into the functions nls() and minpack.lm::nlsLM(), but I have preferred to make the process explicit and
give it a separate function.

Let us illustrate how to use the getInitial() function (part of base R) to do this.
frmtssJ <- weed ~ SSlogisJN(tt, Asym, xmid, scal) # The model formula
lstrt <- getInitial(frmtssJ, weeddf) # Here we get the starting parameters
cat("starting parameters:\n")

## starting parameters:
print(lstrt)

## Asym xmid scal
## 183.9440 12.0660 3.1356
# Next line uses the start. We indicate that the "approximate" Jacobian code is in
# the selfStart code, though in fact it is not an approximation in this case.
sstx1<-nlxb(formula=frmtssJ, start=lstrt, data=weeddf, control=list(japprox="SSJac"))
print(sstx1)

## residual sumsquares = 2.5873 on 12 observations
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## after 5 Jacobian and 5 function evaluations
## name coeff SE tstat pval gradient JSingval
## Asym 196.186 11.31 17.35 3.167e-08 -4.163e-09 44.93
## xmid 12.4173 0.3346 37.11 3.716e-11 -9.691e-07 15.6
## scal 3.18908 0.0698 45.69 5.768e-12 3.202e-06 0.0474
# If no Jacobian code is included in selfStart module, we can actually use an
# approximate Jacobian. See "gradient" elements for differences in result.
sstx1a<-nlxb(formula=frmtssJ, start=lstrt, data=weeddf, control=list(japprox="jacentral"))
print(sstx1a)

## residual sumsquares = 2.5873 on 12 observations
## after 5 Jacobian and 5 function evaluations
## name coeff SE tstat pval gradient JSingval
## Asym 196.186 11.31 17.35 3.167e-08 -4.25e-09 44.93
## xmid 12.4173 0.3346 37.11 3.716e-11 -9.637e-07 15.6
## scal 3.18908 0.0698 45.69 5.768e-12 3.193e-06 0.0474
## We can automate the above in function nlsrSS()
sstSS<-nlsrSS(formula=frmtssJ, data=weeddf)

## suggested start=
## Asym xmid scal
## 183.9440 12.0660 3.1356
print(sstSS)

## residual sumsquares = 2.5873 on 12 observations
## after 5 Jacobian and 5 function evaluations
## name coeff SE tstat pval gradient JSingval
## Asym 196.186 11.31 17.35 3.167e-08 -4.163e-09 44.93
## xmid 12.4173 0.3346 37.11 3.716e-11 -9.691e-07 15.6
## scal 3.18908 0.0698 45.69 5.768e-12 3.202e-06 0.0474

Starting parameters for the Logistic3U model

A similar approach for the Logistic3U model can be used.
b1t <- 2*max(weed)
b1t

## [1] 183.94
lpw1<-log(b1t/weed-1)
clin <- as.list(coef(lm(lpw1~tt)))
b3t <- -clin$tt
b3t

## [1] 0.31892
b2t <- exp(as.numeric(clin[1]))
b2t

## [1] 46.904
library(nlsr)
try1<-nlxb(frmu, data=weeddf, start=c(b1=1, b2=1, b3=1))
pshort(try1)

## try1 -- ss= 2.5873 : b1 = 196.19 b2 = 49.092 b3 = 0.31357; 25 res/ 19 jac
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try2<-nlxb(frmu, data=weeddf, start=c(b1=b1t, b2=b2t, b3=b3t))
pshort(try2)

## try2 -- ss= 2.5873 : b1 = 196.19 b2 = 49.092 b3 = 0.31357; 5 res/ 5 jac

Once again, there is a significant saving in the number of iterations. We have not coded a selfStart function
for Logistic3U, preferring to use the scaled form Logistic3S for which we do not need good starting values.

Jacobian computation
nlxb() offers more options for how the Jacobian is computed than either nls() or minpack.lm::nlsLM().
The choice is made using the control list element japprox. If this is NOT specified, nlxb() attempts to
build Jacobian code using analytic or automatic derivative codes. This is not, of course, always possible,
and sometimes we will get an “error” message that required information is not in the derivatives table. This
will be the case when we use a function like SSlogisJN() unless we indicate that the code is available from
a selfStart module by using a value of SSJac for japprox. The example also showed how we can specify
an approximation method, which is also useful when a formula does not have analytic derivatives available.
In such cases control element japprox can be set to one of jafwd, jaback, jacentral or jand, giving
forward, backward, central and package numDeriv approximations. I recommend jacentral as a reasonable
compromise between accuracy of approximation and amount of computational work.

Bounds constraints on parameters
In some cases, we know that parameters cannot be bigger or smaller than some externally known limits.
Cash reserves cannot be negative. Animals have a minimum need for water. Airplanes cannot carry more
than a known or legislated cargo weight. Such limits can be built into models, but there are some important
details for using the tools in R.

• nls() can only impose bounds if the algorithm="port" argument is used in the call. Unfortunately,
the documentation warns us:

The algorithm = “port” code appears unfinished, and does not even check that the starting value is
within the bounds. Use with caution, especially where bounds are supplied.

• nlsLM() includes bounds in the standard call, but I have observed cases where it fails to get the
correct answer. From my examination of the code, I believe the authors have not taken into account all
possibilities, though it should be noted that I regard all programs as having some weakness in regard to
constrained optimization. Software creators have to work with assumptions on the extremity of scale
that they are willing to countenance, and sometimes problems will be outside the scope envisaged.

# Start MUST be feasible i.e. on or within bounds
anlshob1b <- nls(frms, start=sts1, data=weeddf, lower=c(0,0,0),

upper=c(2,6,3), algorithm='port')
pnls(anlshob1b) # check the answer (short form)

## anlshob1b -- ss= 9.4726 : c1 = 2 c2 = 4.4332 c3 = 3; 10 itns
# nlsLM seems NOT to work with bounds in this example
anlsLM1b <- nlsLM(frms, start=sts1, data=weeddf, lower=c(0,0,0), upper=c(2,6,3))
pnls(anlsLM1b)

## anlsLM1b -- ss= 881.02 : c1 = 2 c2 = 6 c3 = 3; 2 itns
# also no warning if starting out of bounds, but gets good answer!!
st4<-c(c1=4, c2=4, c3=4)
anlsLMob <- nlsLM(frms, start=st4, data=weeddf, lower=c(0,0,0), upper=c(2,6,3))
pnls(anlsLMob)
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## anlsLMob -- ss= 9.4726 : c1 = 2 c2 = 4.4332 c3 = 3; 4 itns
# Try nlsr::nlxb()
anlx1b <- nlxb(frms, start=sts1, data=weeddf, lower=c(0,0,0), upper=c(2,6,3))
pshort(anlx1b)

## anlx1b -- ss= 9.4726 : c1 = 2 c2 = 4.4332 c3 = 3; 12 res/ 12 jac

Functional specification of nonlinear least squares problems
We illustrate how to solve nonlinear least squares problems where the set of functions to be squared is
provided by an R function, as is the Jacobian matrix. Note that nlsr::nlfb() gets this information from
the object returned by the jacfn argument in the “gradient” attribute of that object. This is a programming
artifice to allow a simplification of the nlxb() code. The example is the well-known Banana shaped valley of
Rosenbrock (1960).
frres<-function(x) { ## Rosenbrock as residuals

x1 <- x[1]
x2 <- x[2]
res<-c( 10 * (x2 - x1 * x1), (1 - x1) )

}

frjac<-function(x) { ## Rosenbrock residual derivatives matrix
x1 <- x[1]
x2 <- x[2]

J<-matrix(NA, nrow=2, ncol=2)
J[1,1]<- -20*x1
J[1,2]<- 10
J[2,1]<- -1
J[2,2]<- 0
attr(J,"gradient")<-J # NEEDED for nlfb()
J

}
require(minpack.lm)
require(nlsr)
strt<-c(-1.2,1)
rosnlf<-nlfb(strt, resfn=frres, jacfn=frjac)
print(rosnlf)

## residual sumsquares = 5.6364e-16 on 2 observations
## after 19 Jacobian and 27 function evaluations
## name coeff SE tstat pval gradient JSingval
## p1 1 Inf 0 NaN -3.212e-09 22.38
## p2 1 Inf 0 NaN -1.025e-08 0.4469
rosnlm<-nls.lm(par=strt, fn=frres, jac=frjac)
summary(rosnlm)

##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## [1,] 1 NaN NaN NaN
## [2,] 1 NaN NaN NaN
##
## Residual standard error: NaN on 0 degrees of freedom
## Number of iterations to termination: 16
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## Reason for termination: The cosine of the angle between `fvec' and any column of the Jacobian is at most `gtol' in absolute value.

nls() does not lend itself to solving problems via functional specification, so that possibility will not be
pursued here.

One use of this functional specification with nlsr::nlfb() that is sometimes helpful is the solution of
nonlinear equations. Essentially, if we can compute “residuals” in the form

resfn(x, Data)

where x are our parameters and Data is exogenous information needed to compute the residual functions,
then a result where the residuals are zero has solved a set of nonlinear equations. There are tools for the
nonlinear equations problem, in particular package nleqslv, Hasselman (2013). However, there may be no
solution to the nonlinear equations, in which case the nonlinear least squares approach may be helpful to see
if we are “close” or to enable some exploration of the problem.

To assist users in the case that a Jacobian function is not (easily) available, package nlsr offers the possibility
of numerical derivatives using functions for forward, backward, or central difference approximations, or
those from the numDeriv package. These are used by quoting the names of the approximation functions,
namely jacfn="jafwd", jacfn="jaback", jacfn="jacentral", and jacfn="jand". My experience is that
the forward and backward approximations fail more often than I would like, and the numDeriv approximation
works well but uses too much computational effort. The central difference seems a sensible compromise.
# Extended Rosenbrock functional test with numerical Jacobian
require(minpack.lm)
require(nlsr)
strt<-c(-1.2,1)
rosnlff<-nlfb(strt, resfn=frres, jacfn="jafwd")
print(rosnlff)

## residual sumsquares = 5.6363e-16 on 2 observations
## after 19 Jacobian and 27 function evaluations
## name coeff SE tstat pval gradient JSingval
## p1 1 Inf 0 NaN -3.267e-09 22.38
## p2 1 Inf 0 NaN -1.023e-08 0.4469
rosnlfb<-nlfb(strt, resfn=frres, jacfn="jaback")
print(rosnlfb)

## residual sumsquares = 5.6365e-16 on 2 observations
## after 19 Jacobian and 27 function evaluations
## name coeff SE tstat pval gradient JSingval
## p1 1 Inf 0 NaN -3.157e-09 22.38
## p2 1 Inf 0 NaN -1.028e-08 0.4469
rosnlfc<-nlfb(strt, resfn=frres, jacfn="jacentral")
print(rosnlfc)

## residual sumsquares = 5.6364e-16 on 2 observations
## after 19 Jacobian and 27 function evaluations
## name coeff SE tstat pval gradient JSingval
## p1 1 Inf 0 NaN -3.212e-09 22.38
## p2 1 Inf 0 NaN -1.025e-08 0.4469
rosnlfnd<-nlfb(strt, resfn=frres, jacfn="jand")
print(rosnlfnd)

## residual sumsquares = 5.6364e-16 on 2 observations
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## after 19 Jacobian and 27 function evaluations
## name coeff SE tstat pval gradient JSingval
## p1 1 Inf 0 NaN -3.212e-09 22.38
## p2 1 Inf 0 NaN -1.025e-08 0.4469
# minpack.lm has built in (likely forward difference) Jacobian
rosnlmn<-nls.lm(par=strt, fn=frres)
summary(rosnlmn)

##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## [1,] 1 NaN NaN NaN
## [2,] 1 NaN NaN NaN
##
## Residual standard error: NaN on 0 degrees of freedom
## Number of iterations to termination: 16
## Reason for termination: Relative error between `par' and the solution is at most `ptol'.

Weighted nonlinear regression
Regression attempts to explain a dependent (or predicted) variable as a function of independent (or explanatory
or predictor) variables and estimated parameters. The estimation method commonly used is minimization
of the sum of squared residuals. However, these residuals may be weighted. In the tools available in R for
nonlinear least squares, weights can be specified which multiply the squared residuals, and we need a weight
for each term in the sum. Each residual is therefore multiplied by the square root of its respective weight.

Typically, the weights are given as a vector of numbers. A popular choice is the reciprocal of a measure of the
variance of each data observation. Replicated data allows for sample variances to be used; otherwise we need
some proxy. The concept is that the weights are proportional to our belief that the observations are correct.

Static weights

Let us demonstrate with weights that are simply the reciprocal of the independent variable. This may
not make sense for statistical modeling, but it lets us see that the residuals() function returns weighted
residuals.
wts <- 1/weeddf$tt # wts are reciprocal of time value
tnlx1w<-try(nlxb(formula=frmt, start=stt1, data=weeddf, weights=wts))
# pshort(tnlx1)
print(tnlx1w)

## residual sumsquares = 0.34107 on 12 observations
## after 24 Jacobian and 31 function evaluations
## name coeff SE tstat pval gradient JSingval
## Asym 194.292 9.858 19.71 1.033e-08 -4.585e-11 18.07
## xmid 12.3603 0.2849 43.39 9.163e-12 -4.422e-09 5.737
## scal 3.17704 0.05032 63.13 3.166e-13 1.007e-08 0.01974
ct<-as.list(tnlx1w$coefficients) # Need a list to use ct$... in next line
cat("exp(xmid/scal)=",exp(ct$xmid/ct$scal),"\n")

## exp(xmid/scal)= 48.936
cat("\n")

rtnlx1w<-residuals(tnlx1w)
print(rtnlx1w)
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## [1] -0.017057 -0.045307 0.034645 0.089356 0.164682 -0.029318 -0.417824
## [8] 0.259068 -0.025608 -0.099651 0.200705 -0.094874
## attr(,"gradient")
## Asym xmid scal
## [1,] 0.027232 -1.6200 5.7928
## [2,] 0.036934 -2.1753 7.0935
## [3,] 0.049915 -2.9002 8.5446
## [4,] 0.067140 -3.8303 10.0793
## [5,] 0.089747 -4.9959 11.5742
## [6,] 0.118997 -6.4113 12.8352
## [7,] 0.156144 -8.0580 13.5955
## [8,] 0.202225 -9.8662 13.5408
## [9,] 0.257752 -11.7000 12.3749
## [10,] 0.322364 -13.3591 9.9248
## [11,] 0.394564 -14.6090 6.2551
## [12,] 0.471678 -15.2397 1.7283
cat("explicit sumsquares =", sum(rtnlx1wˆ2),"\n")

## explicit sumsquares = 0.34107

Weights that are functions of the model parameters

Possible choices for weights include the reciprocal of the squared residuals or squared fitted values. Unfortu-
nately, such quantities depend on the parameter values. Consider our Logistic example. We want to predict
y with

fitted(b1, b2, b3, t) = b1/(1 + b2 ∗ exp(−b3 ∗ t))

Thus the raw residuals are

rawres(b1, b2, b3, t) = y − fitted(b1, b2, b3, t)

But if the weights are (1/fitted(b1, b2, b3, t), then the residuals for which the sum of squares is to be calculated
are

resid(b1, b2, b3, t) = rawres(b1, b2, b3, t) ∗ (1/fitted(b1, b2, b3, t)

= y/(b1/(1 + b2 ∗ exp(−b3 ∗ t))) − 1

However, we still need to keep in mind that the user needs to use the formula for the fitted values to get
predictions. While the software needs to minimize the weighted (hence modified) sum of squares, it also must
keep track of the fitted/predicted values.

minpack.lm offers a function wfct() that can be used within the argument supplied as weights in the call to
nlsLM() or nls(), though it usually fails with nlsr::nlxb(). The action of this function was surprising to
me, as wfct() takes an expression as its argument (and may itself be part of an expression in the argument
after the = sign). If the argument to wfct contains fitted, resid or error, then the call to nlsLM or nls
will trigger a further call to one of these functions, evaluate the weights and then run again to compute the
solution. This can be seen by setting trace = TRUE. The process can be verified explicitly for the example
used in the wfct documentation. Unfortunately, wfct() appears to crash knitr or rmarkdown, so we have
evaluated the example outside of Rstudio and included the output below.

17



library(minpack.lm)
library(nlsr) # for pnls
Treated <- Puromycin[Puromycin$state == "treated", ]
# First get raw estimates
wtt3nlm0<-nlsLM(rate ~ Vm * conc/(K + conc), data = Treated, trace=TRUE,

start = c(Vm = 200, K = 0.05))
fit0<-fitted(wtt3nlm0)
# Static wts using fit0
wtt3nlm0s<-nlsLM(rate ~ Vm * conc/(K + conc), data = Treated, trace=TRUE,

start = c(Vm = 200, K = 0.05), weights = wfct(1/fit0ˆ2))
pnls(wtt3nlm0s)
# and run directly, noting the 2 phase operation
wtt3nlm<-nlsLM(rate ~ Vm * conc/(K + conc), data = Treated, trace=TRUE,

start = c(Vm = 200, K = 0.05), weights = wfct(1/fittedˆ2))
pnls(wtt3nlm)
cat("weights from wtt3nlm\n")
as.numeric(wtt3nlm$weights)

It. 0, RSS = 1636.59, Par. = 200 0.05
It. 1, RSS = 1205.62, Par. = 211.157 0.0616271
It. 2, RSS = 1195.57, Par. = 212.511 0.0638418
It. 3, RSS = 1195.45, Par. = 212.666 0.0640939
It. 4, RSS = 1195.45, Par. = 212.682 0.0641186
It. 5, RSS = 1195.45, Par. = 212.684 0.064121

It. 0, RSS = 0.22811, Par. = 200 0.05
It. 1, RSS = 0.227222, Par. = 200.913 0.0494747
It. 2, RSS = 0.227221, Par. = 200.847 0.0494303
It. 3, RSS = 0.227221, Par. = 200.842 0.049426
It. 4, RSS = 0.227221, Par. = 200.841 0.0494256
wtt3nlm0s -- ss= 0.2272213 : Vm = 200.841 K = 0.04942558; 4 itns
It. 0, RSS = 1636.59, Par. = 200 0.05
It. 1, RSS = 1205.62, Par. = 211.157 0.0616271
It. 2, RSS = 1195.57, Par. = 212.511 0.0638418
It. 3, RSS = 1195.45, Par. = 212.666 0.0640939
It. 4, RSS = 1195.45, Par. = 212.682 0.0641186
It. 5, RSS = 1195.45, Par. = 212.684 0.064121
It. 0, RSS = 0.22811, Par. = 200 0.05
It. 1, RSS = 0.227222, Par. = 200.913 0.0494747
It. 2, RSS = 0.227221, Par. = 200.847 0.0494303
It. 3, RSS = 0.227221, Par. = 200.842 0.049426
It. 4, RSS = 0.227221, Par. = 200.841 0.0494256
wtt3nlm -- ss= 0.2272213 : Vm = 200.841 K = 0.04942558; 4 itns
Show in New Window
weights from wtt3nlm
[1] 3.910941e-04 3.910941e-04 9.460635e-05 9.460635e-05 5.539227e-05 5.539227e-05
[7] 3.687173e-05 3.687173e-05 2.745956e-05 2.745956e-05 2.475956e-05 2.475956e-05

The documentation of wfct suggests that it can also use the name of the response (dependent) variable or
the name of the predictor (independent) variable. However, some models have more than one independent
variable, and I have not explored what happens in such cases.

It would be helpful if nlsr had the capability to include functional weights. Duncan Murdoch suggested a
patch that allows this. We modify the nlfb() routine to detect and act on functional weights.
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library(nlsr)
Treated <- Puromycin[Puromycin$state == "treated", ]
# "regression" formula
w1frm <- rate ~ Vm * conc/(K + conc)
# Explicit dynamic weighted nlxb
w3frm <- rate/(Vm * conc/(K + conc)) ~ 1
dynweighted <- nlxb(w3frm, data = Treated, start = c(Vm = 201.003, K = 0.04696),

trace=TRUE, control=list(prtlvl=0))

## No backtrack
## 00lamda: 1e-04 SS= 0.17941 ( NA ) at Vm = 201 K = 0.04696 f/j 1 / 0
## <<lamda: 4e-05 SS= 0.17941 ( 3.3805e-05 ) at Vm = 201 K = 0.046962 f/j 2 / 1
## <<lamda: 1.6e-05 SS= 0.17941 ( 5.2155e-07 ) at Vm = 201 K = 0.046962 f/j 3 / 2
pshort(dynweighted)

## dynweighted -- ss= 0.17941 : Vm = 201 K = 0.046962; 3 res/ 3 jac
# Compute the model from the ORIGINAL model (w1frm) using parameters from dynweighted
dyn0 <- nlxb(w1frm, start=coefficients(dynweighted), data=Treated, control=list(jemax=0))
wfdyn0 <- 1/fitted(dyn0)ˆ2 # weights
print(as.numeric(wfdyn0))

## [1] 2.7745e-04 2.7745e-04 7.8659e-05 7.8659e-05 5.0396e-05 5.0396e-05
## [7] 3.6446e-05 3.6446e-05 2.9076e-05 2.9076e-05 2.6910e-05 2.6910e-05
pshort(dyn0) # Shows sumsquares without weights, but computes weights we used

## dyn0 -- ss= 1786.1 : Vm = 201 K = 0.046962; 1 res/ 1 jac
formulaweighted <- nlxb(w1frm, data = Treated, start = c(Vm = 201.003, K = 0.04696),

weights = ~ 1/fittedˆ2, trace=TRUE, control=list(prtlvl=0))

## No backtrack
## 00lamda: 1e-04 SS= 0.17941 ( NA ) at Vm = 201 K = 0.04696 f/j 1 / 0
## <<lamda: 4e-05 SS= 0.17286 ( 0.059872 ) at Vm = 201.77 K = 0.050223 f/j 2 / 1
pshort(formulaweighted)

## formulaweighted -- ss= 0.17286 : Vm = 201.77 K = 0.050223; 19 res/ 2 jac
wtsfromfits<-1/fitted(formulaweighted)ˆ2
print(as.numeric(wtsfromfits))

## [1] 3.0281e-04 3.0281e-04 8.2893e-05 8.2893e-05 5.2112e-05 5.2112e-05
## [7] 3.7057e-05 3.7057e-05 2.9166e-05 2.9166e-05 2.6857e-05 2.6857e-05
print(as.numeric(formulaweighted$weights))

## [1] 3.0281e-04 3.0281e-04 8.2893e-05 8.2893e-05 5.2112e-05 5.2112e-05
## [7] 3.7057e-05 3.7057e-05 2.9166e-05 2.9166e-05 2.6857e-05 2.6857e-05

There are differences in the (weighted) sums of squares. The dynweighted case minimizes the residuals
weighted by the actual CURRENT fits as expressed by the formula. The formulaweighted case computes
the weights at each iteration from the previous (or original) fit. It is a form of iteratively weighted least
squares. The case wtt3nlm above uses nlsLM with weights specified in wfct() and computes the weights
once from an unweighted model, then runs a second, statically weighted calculation. Keeping track of these
differences requires a lot of care, and I advise documenting what is done carefully.
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Ongoing efforts
The examples above show how to use package nlsr as it exists at the end of December 2022. The story,
however, is not finished. It would be very nice to be able to identify and work with models that are partially
linear. Solving such models is possible with the algorithm="plinear" option of nls(), but identifying
which parameters enter linearly is not easy for most users. Moreover, the specification of the model to the
VARPRO solver that is called by the plinear option is inconsistent with the general specification used by
nls() and other nonlinear least squares tools for R.

There are also a number of possible tweaks to details in nlsr and efforts to include such improvements are a
continuing interest. I welcome communication and collaboration to continue the improvement of the package
and R in general.
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