
nlmrt-vignette

John C. Nash

November 16, 2024

Background

This vignette discusses the R package nlmrt, that aims to provide computation-
ally robust tools for nonlinear least squares problems. Note that R already has
the nls() function to solve nonlinear least squares problems, and this function
has a large repertoire of tools for such problems. However, it is speci�cally NOT
indicated for problems where the residuals are small or zero. Furthermore, it
frequently fails to �nd a solution if starting parameters are provided that are
not close enough to a solution. The tools of nlmrt are very much intended to
cope with both these issues.

The functions are also intended to provide stronger support for bounds con-
straints and to introduce the capability for masks, that is, parameters that are
�xed for a given run of the function.

nlmrt tools generally do not return the large nls-style object. However,
we do provide a tool wrapnls that will run either nlxb followed by a call to
nls. The call to nls is adjusted to use the port algorithm if there are bounds
constraints.

1 An example problem and its solution

Let us try an example initially presented by [5] and developed by [2]. This is
a model for the regrowth of pasture. We set up the computation by putting
the data for the problem in a data frame, and specifying the formula for the
model. This can be as a formula object, but I have found that saving it as a
character string seems to give fewer di�culties. Note the " " that implies "is
modeled by". There must be such an element in the formula for this package
(and for nls()). We also specify two sets of starting parameters, that is, the
ones which is a trivial (but possibly unsuitable) start with all parameters set
to 1, and huetstart which was suggested in [2]. Finally we load the routines
in the package nlmrt.

> options(width=60)

> pastured <- data.frame(

+ time=c(9, 14, 21, 28, 42, 57, 63, 70, 79),

1

+ yield= c(8.93, 10.8, 18.59, 22.33, 39.35,

+ 56.11, 61.73, 64.62, 67.08))

> regmod <- "yield ~ t1 - t2*exp(-exp(t3+t4*log(time)))"

> ones <- c(t1=1, t2=1, t3=1, t4=1) # all ones start

> huetstart <- c(t1=70, t2=60, t3=0, t4=1)

> require(nlmrt)

Let us now call the routine nlsmnqb (even though we are not specifying
bounds). We try both starts.

> anmrt <- nlxb(regmod, start=ones, trace=FALSE, data=pastured)

> print(anmrt)

nlmrt class object: x

residual sumsquares = 4648.1 on 9 observations

after 3 Jacobian and 4 function evaluations

name coeff SE tstat pval gradient JSingval

t1 38.8378 NA NA NA -2.95e-11 3

t2 1.00007 NA NA NA -7.748e-10 1.437e-09

t3 0.998202 NA NA NA 1.889e-08 2.275e-16

t4 0.996049 NA NA NA 4.15e-08 5.091e-26

> anmrtx <- try(nlxb(regmod, start=huetstart, trace=FALSE, data=pastured))

> print(strwrap(anmrtx))

[1] "c(0.480575683702355, 0.669264006079278,"

[2] "-2.28426563497321, 0.843862687207526,"

[3] "0.734652618487651, 0.0665106492952035,"

[4] "-0.985862291968047, -0.0250879549066241,"

[5] "0.500350456693468)"

[6] "c(1, 1, 1, 1, 1, 1, 1, 1, 1, -0.981556726091093,"

[7] "-0.948171282599528, -0.869750270888725,"

[8] "-0.758399834057041, -0.484261107837458,"

[9] "-0.223408951427347, -0.149363030476155,"

[10] "-0.0869332933121748, -0.0385258954067767,"

[11] "1.12712321032758, 3.11275223693948, 7.48692917929384,"

[12] "12.9373484175605, 21.6609765596451, 20.6543768151933,"

[13] "17.5183401160426, 13.0985419560087, 7.73883739451391,"

[14] "2.47654281941786, 8.21473160617142, 22.7941238760063,"

[15] "43.1098907467032, 80.9615739893338, 83.5067043689998,"

[16] "72.5808432835138, 55.649093177887, 33.8144464340503)"

[17] "44"

[18] "32"

[19] "c(t1 = 69.9553722026373, t2 = 61.6818319271118, t3 ="

[20] "-9.20880204813341, t4 = 2.37778402563408)"

[21] "8.37588360361963"

[22] "c(-Inf, -Inf, -Inf, -Inf)"

2

[23] "c(Inf, Inf, Inf, Inf)"

[24] "integer(0)"

Note that the standard nls() of R fails to �nd a solution from either start.

> anls <- try(nls(regmod, start=ones, trace=FALSE, data=pastured))

> print(strwrap(anls))
[1] "Error in nlsModel(formula, mf, start, wts,"
[2] "scaleOffset = scOff, nDcentral = nDcntr) : singular"
[3] "gradient matrix at initial parameter estimates"

> anlsx <- try(nls(regmod, start=huetstart, trace=FALSE, data=pastured))

> print(strwrap(anlsx))
[1] "Error in nls(regmod, start = huetstart, trace ="
[2] "FALSE, data = pastured) : singular gradient"

In both cases, the nls() failed with a 'singular gradient'. This implies the
Jacobian is e�ectively singular at some point. The Levenberg-Marquardt sta-
bilization used in nlxb avoids this particular issue by augmenting the Jacobian
until it is non-singular. The details of this common approach may be found
elsewhere [4, Algorithm 23].

There are some other tools for R that aim to solve nonlinear least squares
problems. We have not yet been able to successfully use the INRA package
nls2. This is a quite complicated package and is not installable as a regular R
package using install.packages(). Note that there is a very di�erent package
by the same name on CRAN by Gabor Grothendieck.

2 The nls solution

We can call nls after getting a potential nonlinear least squares solution using
nlxb. Package nlmrt has function wrapnls to allow this to be carried out
automatically. Thus,

> awnls <- wrapnls(regmod, start=ones, data=pastured, control=list(rofftest=FALSE))

> print(awnls)
Nonlinear regression model

model: yield ~ t1 - t2 * exp(-exp(t3 + t4 * log(time)))
data: data
t1 t2 t3 t4

69.96 61.68 -9.21 2.38
residual sum-of-squares: 8.38

Number of iterations to convergence: 0
Achieved convergence tolerance: 7.91e-08

> cat("Note that the above is just the nls() summary result.\n")
Note that the above is just the nls() summary result.

3

3 Problems speci�ed by residual functions

The model expressions in R , such as
yield ∼ t1 - t2*exp(-exp(t3+t4*log(time)))

are an extremely helpful feature of the language. Moreover, they are used
to compute symbolic or automatic derivatives, so we do not have to rely on
numerical approximations for the Jacobian of the nonlinar least squares problem.
However, there are many situations where the expression structure is not �exible
enough to allow us to de�ne our residuals, or where the construction of the
residuals is simply too complicated. In such cases it is helpful to have tools that
work with R functions.

Once we have an R function for the residuals, we can use the safeguarded
Marquardt routine nlfb from package nlmrt or else the routine nls.lm from
package minpack.lm [1]. The latter is built on the Minpack Fortran codes of
[3] implemented by Kate Mullen. nlfb is written entirely in R , and is intended
to be quite aggessive in ensuring it �nds a good minimum. Thus these two
approaches have somewhat di�erent characteristics.

Let us consider a slightly di�erent problem, called WEEDS. Here the ob-
jective is to model a set of 12 data points (density y of weeds at annual time
points tt) versus the time index. (A minor note: use of t rather than tt in R
may encourage confusion with the transpose function t(), so I tend to avoid
plain t.) The model suggested was a 3-parameter logistic function,

ymodel = b1/(1 + b2exp(−b3tt))
and while it is possible to use this formulation, a scaled version gives slightly

better results
ymodel = 100b1/(1 + 10b2exp(−0.1b3tt))
The residuals for this latter model (in form "model" minus "data") are coded

in R in the following code chunk in the function shobbs.res. We have also coded
the Jacobian for this model as shobbs.jac

> shobbs.res <- function(x){ # scaled Hobbs weeds problem -- residual

+ # This variant uses looping

+ if(length(x) != 3) stop("hobbs.res -- parameter vector n!=3")

+ y <- c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443, 38.558, 50.156, 62.948,

+ 75.995, 91.972)

+ tt <- 1:12

+ res <- 100.0*x[1]/(1+x[2]*10.*exp(-0.1*x[3]*tt)) - y

+ }

> shobbs.jac <- function(x) { # scaled Hobbs weeds problem -- Jacobian

+ jj <- matrix(0.0, 12, 3)

+ tt <- 1:12

+ yy <- exp(-0.1*x[3]*tt) # We don't need data for the Jacobian

+ zz <- 100.0/(1+10.*x[2]*yy)

+ jj[tt,1] <- zz

+ jj[tt,2] <- -0.1*x[1]*zz*zz*yy

+ jj[tt,3] <- 0.01*x[1]*zz*zz*yy*x[2]*tt

4

+ return(jj)

+ }

With package nlmrt, function nlfb can be used to estimate the parameters
of the WEEDS problem as follows, where we use the naive starting point where
all parameters are 1.

> st <- c(b1=1, b2=1, b3=1)

> ans1 <- nlfb(st, shobbs.res, shobbs.jac, trace=FALSE)

> print(ans1)
nlmrt class object: x
residual sumsquares = 2.5873 on 12 observations

after 10 Jacobian and 14 function evaluations
name coeff SE tstat pval gradient JSingval

b1 1.96186 0.1131 17.35 3.166e-08 -7.327e-06 130.1
b2 4.90916 0.1688 29.08 3.282e-10 1.433e-07 6.165
b3 3.1357 0.06863 45.69 5.768e-12 1.717e-06 2.735

This works very well, with almost identical iterates as given by nlxb. (Since
the algorithms are the same, this should be the case.) Note that we turn o�
the trace output. There is also the possibility of interrupting the iterations
to watch the progress. Changing the value of watch in the call to nlfb below
allows this. In this code chunk, we use an internal numerical approximation to
the Jacobian.

> cat("No jacobian function -- use internal approximation\n")
No jacobian function -- use internal approximation

> ans1n <- nlfb(st, shobbs.res, trace=FALSE, control=list(watch=FALSE)) # NO jacfn

> print(ans1n)
nlmrt class object: x
residual sumsquares = 2.5873 on 12 observations

after 10 Jacobian and 14 function evaluations
name coeff SE tstat pval gradient JSingval

b1 1.96186 0.1131 17.35 3.166e-08 -7.327e-06 130.1
b2 4.90916 0.1688 29.08 3.282e-10 1.429e-07 6.165
b3 3.1357 0.06863 45.69 5.768e-12 1.719e-06 2.735

Note that we could also form the sum of squares function and the gradient
and use a function minimization code. The next code block shows how this
is done, creating the sum of squares function and its gradient, then using the
optimx package to call a number of minimizers simultaneously.

> shobbs.f <- function(x){

+ res <- shobbs.res(x)

+ as.numeric(crossprod(res))

+ }

> shobbs.g <- function(x){

+ res <- shobbs.res(x) # This is NOT efficient -- we generally have res already calculated

+ JJ <- shobbs.jac(x)

+ 2.0*as.vector(crossprod(JJ,res))

+ }

5

> require(optimx)

> aopx <- optimx(st, shobbs.f, shobbs.g, control=list(all.methods=TRUE))

> summary(aopx)
b1 b2 b3 value fevals gevals

BFGS 1.9619 4.9092 3.1357 2.5873e+00 119 36
CG 1.9120 4.8246 3.1586 2.6679e+00 427 101
Nelder-Mead 1.9645 4.9116 3.1340 2.5877e+00 196 NA
L-BFGS-B 1.9619 4.9092 3.1357 2.5873e+00 41 41
nlm 1.9619 4.9092 3.1357 2.5873e+00 NA NA
nlminb 1.9619 4.9092 3.1357 2.5873e+00 31 29
spg NA NA NA 8.9885e+307 NA NA
ucminf NA NA NA 8.9885e+307 NA NA
Rcgmin 1.9619 4.9092 3.1357 2.5873e+00 148 57
Rvmmin 1.9619 4.9092 3.1357 2.5873e+00 72 43
newuoa NA NA NA 8.9885e+307 NA NA
bobyqa NA NA NA 8.9885e+307 NA NA
nmkb NA NA NA 8.9885e+307 NA NA
hjkb NA NA NA 8.9885e+307 NA NA

niter convcode kkt1 kkt2 xtime
BFGS NA 0 TRUE TRUE 0.004
CG NA 1 FALSE TRUE 0.004
Nelder-Mead NA 0 FALSE TRUE 0.001
L-BFGS-B NA 0 TRUE TRUE 0.001
nlm 47 0 TRUE TRUE 0.001
nlminb 28 0 TRUE TRUE 0.001
spg NA 9999 NA NA 0.001
ucminf NA 9999 NA NA 0.001
Rcgmin NA 0 TRUE TRUE 0.002
Rvmmin NA 0 TRUE TRUE 0.003
newuoa NA 9999 NA NA 0.000
bobyqa NA 9999 NA NA 0.001
nmkb NA 9999 NA NA 0.001
hjkb NA 9999 NA NA 0.001

> cat("\nNow with numerical gradient approximation or derivative free methods\n")
Now with numerical gradient approximation or derivative free methods

> aopxn <- optimx(st, shobbs.f, control=list(all.methods=TRUE))

> summary(aopxn) # no file output
b1 b2 b3 value fevals gevals

BFGS 1.9619 4.9092 3.1357 2.5873e+00 118 36
CG 1.7998 4.5971 3.2078 3.8295e+00 413 101
Nelder-Mead 1.9645 4.9116 3.1340 2.5877e+00 196 NA
L-BFGS-B 1.9619 4.9092 3.1357 2.5873e+00 47 47
nlm 1.9619 4.9092 3.1357 2.5873e+00 NA NA
nlminb 1.9619 4.9092 3.1357 2.5873e+00 32 93
spg NA NA NA 8.9885e+307 NA NA
ucminf NA NA NA 8.9885e+307 NA NA
Rcgmin 1.9377 4.8810 3.1488 2.6022e+00 1217 501
Rvmmin 1.4795 3.1472 3.1451 7.6076e+01 3031 235
newuoa NA NA NA 8.9885e+307 NA NA
bobyqa NA NA NA 8.9885e+307 NA NA
nmkb NA NA NA 8.9885e+307 NA NA
hjkb NA NA NA 8.9885e+307 NA NA

niter convcode kkt1 kkt2 xtime
BFGS NA 0 TRUE TRUE 0.001
CG NA 1 FALSE TRUE 0.005
Nelder-Mead NA 0 FALSE TRUE 0.000
L-BFGS-B NA 0 TRUE TRUE 0.001
nlm 50 0 TRUE TRUE 0.000
nlminb 27 0 TRUE TRUE 0.000
spg NA 9999 NA NA 0.000
ucminf NA 9999 NA NA 0.001
Rcgmin NA 1 FALSE TRUE 0.023
Rvmmin NA 1 FALSE TRUE 0.052
newuoa NA 9999 NA NA 0.000
bobyqa NA 9999 NA NA 0.001

6

nmkb NA 9999 NA NA 0.000
hjkb NA 9999 NA NA 0.000

We see that most of the minimizers work with either the analytic or approx-
imated gradient. The 'CG' option of function optim() does not do very well in
either case. As the author of the original step and description and then Turbo
Pascal code, I can say I was never very happy with this method and replaced it
recently with Rcgmin from the package of the same name, in the process adding
the possibility of bounds or masks constraints.

4 Converting an expression to a function

Clearly if we have an expression, it would be nice to be able to automatically
convert this to a function, if possible also getting the derivatives. Indeed, it is
possible to convert an expression to a function, and there are several ways to
do this (references??). In package nlmrt we provide the tools model2grfun.R,
model2jacfun.R, model2resfun.R, and model2ssfun.R to convert a model ex-
pression to a function to compute the gradient, Jacobian, residuals or sum of
squares functions respectively. We do not provide any tool for converting a
function for the residuals back to an expression, as functions can use structures
that are not easily expressed as R expressions.

Below are code chunks to illustrate the generation of the residual, sum of
squares, Jacobian and gradient code for the Ratkowsky problem used earlier
in the vignette. The commented-out �rst line shows how we would use one of
these function generators to output the function to a �le named "testresfn.R".
However, it is not necessary to generate the �le.

First, let us generate the residuals. We must supply the names of the param-
eters, and do this via the starting vector of parameters ones. The actual values
are not needed by model2resfun, just the names. Other names are drawn from
the variables used in the model expression regmod.

> # jres <- model2resfun(regmod, ones, funname="myxres", file="testresfn.R")

> jres <- model2resfun(regmod, ones)

> print(jres)
function (prm, yield = NULL, time = NULL)
{

t1 <- prm[[1]]
t2 <- prm[[2]]
t3 <- prm[[3]]
t4 <- prm[[4]]
resids <- as.numeric(eval(t1 - t2 * exp(-exp(t3 + t4 * log(time))) -

yield))
}
<environment: 0x55ec8891fef8>

> valjres <- jres(ones, yield=pastured$yield, time=pastured$time)

> cat("valjres:")
valjres:

> print(valjres)
[1] -7.93 -9.80 -17.59 -21.33 -38.35 -55.11 -60.73 -63.62
[9] -66.08

7

Now let us also generate the Jacobian and test it using the numerical ap-
proximations from package numDeriv.

> jjac <- model2jacfun(regmod, ones)

> print(jjac)
function (prm, yield = NULL, time = NULL)
{

t1 <- prm[[1]]
t2 <- prm[[2]]
t3 <- prm[[3]]
t4 <- prm[[4]]
localdf <- data.frame(yield, time)
jstruc <- with(localdf, eval({

.expr1 <- log(time)

.expr4 <- exp(t3 + t4 * .expr1)

.expr6 <- exp(-.expr4)

.value <- t1 - t2 * .expr6 - yield

.grad <- array(0, c(length(.value), 4), list(NULL, c("t1",
"t2", "t3", "t4")))

.grad[, "t1"] <- 1

.grad[, "t2"] <- -.expr6

.grad[, "t3"] <- t2 * (.expr6 * .expr4)

.grad[, "t4"] <- t2 * (.expr6 * (.expr4 * .expr1))
attr(.value, "gradient") <- .grad
.value

}))
jacmat <- attr(jstruc, "gradient")
return(jacmat)

}
<environment: 0x55ec887e6f50>

> # Note that we now need some data!

> valjjac <- jjac(ones, yield=pastured$yield, time=pastured$time)

> cat("valjac:")
valjac:

> print(valjjac)
t1 t2 t3 t4

[1,] 1 -2.3724e-11 5.8040e-10 1.2753e-09
[2,] 1 -2.9683e-17 1.1296e-15 2.9812e-15
[3,] 1 -1.6172e-25 9.2317e-24 2.8106e-23
[4,] 1 -8.8110e-34 6.7062e-32 2.2347e-31
[5,] 1 -2.6154e-50 2.9859e-48 1.1160e-47
[6,] 1 -5.1229e-68 7.9375e-66 3.2092e-65
[7,] 1 -4.2297e-75 7.2434e-73 3.0010e-72
[8,] 1 -2.3044e-83 4.3849e-81 1.8629e-80
[9,] 1 -5.4670e-94 1.1740e-91 5.1298e-91

> # Now compute the numerical approximation

> require(numDeriv)

> Jn <- jacobian(jres, ones, , yield=pastured$yield, time=pastured$time)

> cat("maxabsdiff=",max(abs(Jn-valjjac)),"\n")
maxabsdiff= 3.7744e-10

As with the WEEDS problem, we can compute the sum of squares function
and the gradient.

> ssfn <- model2ssfun(regmod, ones) # problem getting the data attached!

> print(ssfn)
function (prm, yield = NULL, time = NULL)
{

8

t1 <- prm[[1]]
t2 <- prm[[2]]
t3 <- prm[[3]]
t4 <- prm[[4]]
resids <- as.numeric(eval(t1 - t2 * exp(-exp(t3 + t4 * log(time))) -

yield))
ss <- as.numeric(crossprod(resids))

}
<environment: 0x55ec882689f8>

> valss <- ssfn(ones, yield=pastured$yield, time=pastured$time)

> cat("valss: ",valss,"\n")
valss: 17533

> grfn <- model2grfun(regmod, ones) # problem getting the data attached!

> print(grfn)
function (prm, yield = NULL, time = NULL)
{

t1 <- prm[[1]]
t2 <- prm[[2]]
t3 <- prm[[3]]
t4 <- prm[[4]]
localdf <- data.frame(yield, time)
jstruc <- with(localdf, eval({

.expr1 <- log(time)

.expr4 <- exp(t3 + t4 * .expr1)

.expr6 <- exp(-.expr4)

.value <- t1 - t2 * .expr6 - yield

.grad <- array(0, c(length(.value), 4), list(NULL, c("t1",
"t2", "t3", "t4")))

.grad[, "t1"] <- 1

.grad[, "t2"] <- -.expr6

.grad[, "t3"] <- t2 * (.expr6 * .expr4)

.grad[, "t4"] <- t2 * (.expr6 * (.expr4 * .expr1))
attr(.value, "gradient") <- .grad
.value

}))
jacmat <- attr(jstruc, "gradient")
resids <- as.numeric(eval(t1 - t2 * exp(-exp(t3 + t4 * log(time))) -

yield))
grj <- as.vector(2 * crossprod(jacmat, resids))

}
<environment: 0x55ec882326a8>

> valgr <- grfn(ones, yield=pastured$yield, time=pastured$time)

> cat("valgr:")
valgr:

> print(valgr)
[1] -6.8108e+02 3.7626e-10 -9.2051e-09 -2.0226e-08

> gn <- grad(ssfn, ones, yield=pastured$yield, time=pastured$time)

> cat("maxabsdiff=",max(abs(gn-valgr)),"\n")
maxabsdiff= 1.1034e-07

Moreover, we can use the Huet starting parameters as a double check on our
conversion of the expression to various optimization-style functions.

> cat("\n\nHuetstart:")
Huetstart:

> print(huetstart)
t1 t2 t3 t4
70 60 0 1

9

> valjres <- jres(huetstart, yield=pastured$yield, time=pastured$time)

> cat("valjres:")
valjres:

> print(valjres)
[1] 61.063 59.200 51.410 47.670 30.650 13.890 8.270 5.380
[9] 2.920

> valss <- ssfn(huetstart, yield=pastured$yield, time=pastured$time)

> cat("valss:", valss, "\n")
valss: 13387

> valjjac <- jjac(huetstart, yield=pastured$yield, time=pastured$time)

> cat("valjac:")
valjac:

> print(valjjac)
t1 t2 t3 t4

[1,] 1 -1.2341e-04 6.6641e-02 1.4643e-01
[2,] 1 -8.3153e-07 6.9848e-04 1.8433e-03
[3,] 1 -7.5826e-10 9.5540e-07 2.9087e-06
[4,] 1 -6.9144e-13 1.1616e-09 3.8708e-09
[5,] 1 -5.7495e-19 1.4489e-15 5.4154e-15
[6,] 1 -1.7588e-25 6.0151e-22 2.4319e-21
[7,] 1 -4.3596e-28 1.6479e-24 6.8276e-24
[8,] 1 -3.9754e-31 1.6697e-27 7.0937e-27
[9,] 1 -4.9061e-35 2.3255e-31 1.0161e-30

> Jn <- jacobian(jres, huetstart, , yield=pastured$yield, time=pastured$time)

> cat("maxabsdiff=",max(abs(Jn-valjjac)),"\n")
maxabsdiff= 5.3945e-10

> valgr <- grfn(huetstart, yield=pastured$yield, time=pastured$time)

> cat("valgr:")
valgr:

> print(valgr)
[1] 560.90509 -0.01517 8.22138 18.10084

> gn <- grad(ssfn, huetstart, yield=pastured$yield, time=pastured$time)

> cat("maxabsdiff=",max(abs(gn-valgr)),"\n")
maxabsdiff= 6.0068e-08

Now that we have these functions, let us apply them with nlfb.

> cat("All ones to start\n")
All ones to start

> anlfb <- nlfb(ones, jres, jjac, trace=FALSE, yield=pastured$yield, time=pastured$time)

> print(strwrap(anlfb))
[1] "c(29.9077777777472, 28.0377777777778,"
[2] "20.2477777777778, 16.5077777777778,"
[3] "-0.512222222222185, -17.2722222222222,"
[4] "-22.8922222222222, -25.7822222222222,"
[5] "-28.2422222222222)"
[6] "c(1, 1, 1, 1, 1, 1, 1, 1, 1, -2.5904803198541e-11,"
[7] "-3.48177832682637e-17, -2.11977026263411e-25,"
[8] "-1.30186504324169e-33, -5.00031799754126e-50,"
[9] "-1.31593194786314e-67, -1.22799624106577e-74,"

[10] "-7.73807145709702e-83, -2.22164181475742e-93,"
[11] "6.31486798422103e-10, 1.31950211229137e-15,"
[12] "1.20434229540344e-23, 9.8581678893932e-32,"
[13] "5.67649212681333e-48, 2.02656873886828e-65,"

10

[14] "2.0899294411951e-72, 1.46306184917541e-80,"
[15] "4.73981859866247e-91, 1.38751831375641e-09,"
[16] "3.48224172088535e-15, 3.66664714105511e-23,"
[17] "3.28494315031004e-31, 2.12168521608149e-47,"
[18] "8.19352130903529e-65, 8.65885924352346e-72,"
[19] "6.21581130504567e-80, 2.0710390197009e-90)"
[20] "4"
[21] "3"
[22] "c(t1 = 38.8377777777778, t2 = 1.00007369903283, t3 ="
[23] "0.998201661261902, t4 = 0.996048644398237)"
[24] "4648.06335555373"
[25] "c(-Inf, -Inf, -Inf, -Inf)"
[26] "c(Inf, Inf, Inf, Inf)"
[27] "NULL"

> cat("Huet start\n")
Huet start

> anlfbh <- nlfb(huetstart, jres, jjac, trace=FALSE, yield=pastured$yield, time=pastured$time)

> print(strwrap(anlfbh))
[1] "c(0.480575683702348, 0.669264006079271,"
[2] "-2.28426563497322, 0.843862687207512,"
[3] "0.734652618487637, 0.0665106492951892,"
[4] "-0.985862291968061, -0.0250879549066383,"
[5] "0.500350456693454)"
[6] "c(1, 1, 1, 1, 1, 1, 1, 1, 1, -0.981556726091093,"
[7] "-0.948171282599528, -0.869750270888724,"
[8] "-0.758399834057038, -0.484261107837453,"
[9] "-0.223408951427342, -0.14936303047615,"

[10] "-0.0869332933121714, -0.0385258954067745,"
[11] "1.12712321032758, 3.1127522369395, 7.4869291792939,"
[12] "12.9373484175606, 21.6609765596452, 20.6543768151931,"
[13] "17.5183401160423, 13.0985419560084, 7.73883739451359,"
[14] "2.47654281941787, 8.21473160617148, 22.7941238760065,"
[15] "43.1098907467036, 80.9615739893341, 83.5067043689991,"
[16] "72.5808432835127, 55.6490931778857, 33.8144464340489)"
[17] "44"
[18] "32"
[19] "c(t1 = 69.9553722026373, t2 = 61.6818319271118, t3 ="
[20] "-9.20880204813341, t4 = 2.37778402563408)"
[21] "8.37588360361962"
[22] "c(-Inf, -Inf, -Inf, -Inf)"
[23] "c(Inf, Inf, Inf, Inf)"
[24] "NULL"

5 Using bounds and masks

The manual for nls() tells us that bounds are restricted to the 'port' algorithm.

lower, upper: vectors of lower and upper bounds, replicated to be as

long as 'start'. If unspecified, all parameters are assumed

to be unconstrained. Bounds can only be used with the

'"port"' algorithm. They are ignored, with a warning, if

given for other algorithms.

Later in the manual, there is the discomforting warning:

The 'algorithm = "port"' code appears unfinished, and does not

even check that the starting value is within the bounds. Use with

caution, especially where bounds are supplied.

11

We will base the rest of this discussion on the examples in man/nlmrt-
package.Rd, and use an unscaled version of the WEEDS problem.

First, let us estimate the model with no constraints.

> require(nlmrt)

> # Data for Hobbs problem

> ydat <- c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443,

+ 38.558, 50.156, 62.948, 75.995, 91.972)

> tdat <- 1:length(ydat)

> weeddata1 <- data.frame(y=ydat, tt=tdat)

> start1 <- c(b1=1, b2=1, b3=1) # name parameters for nlxb, nls, wrapnls.

> eunsc <- y ~ b1/(1+b2*exp(-b3*tt))

> anlxb1 <- try(nlxb(eunsc, start=start1, data=weeddata1))

> print(anlxb1)
nlmrt class object: x
residual sumsquares = 2.5873 on 12 observations

after 18 Jacobian and 25 function evaluations
name coeff SE tstat pval gradient JSingval

b1 196.186 11.31 17.35 3.164e-08 -2.663e-07 1011
b2 49.0916 1.688 29.08 3.281e-10 1.59e-07 0.4605
b3 0.31357 0.006863 45.69 5.768e-12 -5.531e-05 0.04715

Now let us see if we can apply bounds. Note that we name the parameters
in the vectors for the bounds. First we apply bounds that are NOT active at
the unconstrained solution.

> # WITH BOUNDS

> startf1 <- c(b1=1, b2=1, b3=.1) # a feasible start when b3 <= 0.25

> anlxb1 <- try(nlxb(eunsc, start=startf1, lower=c(b1=0, b2=0, b3=0),

+ upper=c(b1=500, b2=100, b3=5), data=weeddata1))

> print(anlxb1)
nlmrt class object: x
residual sumsquares = 2.5873 on 12 observations

after 13 Jacobian and 18 function evaluations
name coeff SE tstat pval gradient JSingval

b1 196.186 11.31 17.35 3.164e-08 -2.662e-07 1011
b2 49.0916 1.688 29.08 3.281e-10 1.648e-07 0.4605
b3 0.31357 0.006863 45.69 5.768e-12 -5.872e-05 0.04715

We note that nls() also solves this case.

> anlsb1 <- try(nls(eunsc, start=startf1, lower=c(b1=0, b2=0, b3=0),

+ upper=c(b1=500, b2=100, b3=5), data=weeddata1, algorithm='port'))

> print(anlsb1)
Nonlinear regression model

model: y ~ b1/(1 + b2 * exp(-b3 * tt))
data: weeddata1

b1 b2 b3
196.186 49.092 0.314
residual sum-of-squares: 2.59

Algorithm "port", convergence message: relative convergence (4)

Now we will change the bounds so the start is infeasible.

12

> ## Uncon solution has bounds ACTIVE. Infeasible start

> anlxb2i <- try(nlxb(eunsc, start=start1, lower=c(b1=0, b2=0, b3=0),

+ upper=c(b1=500, b2=100, b3=.25), data=weeddata1))

> print(anlxb2i)
[1] "Error in nlxb(eunsc, start = start1, lower = c(b1 = 0, b2 = 0, b3 = 0), : \n Infeasible start\n"
attr(,"class")
[1] "try-error"
attr(,"condition")
<simpleError in nlxb(eunsc, start = start1, lower = c(b1 = 0, b2 = 0, b3 = 0), upper = c(b1 = 500, b2 = 100, b3 = 0.25), data = weeddata1): Infeasible start>

> anlsb2i <- try(nls(eunsc, start=start1, lower=c(b1=0, b2=0, b3=0),

+ upper=c(b1=500, b2=100, b3=.25), data=weeddata1, algorithm='port'))

> print(anlsb2i)
[1] "Error in nls(eunsc, start = start1, lower = c(b1 = 0, b2 = 0, b3 = 0), : \n Convergence failure: initial par violates constraints\n"
attr(,"class")
[1] "try-error"
attr(,"condition")
<simpleError in nls(eunsc, start = start1, lower = c(b1 = 0, b2 = 0, b3 = 0), upper = c(b1 = 500, b2 = 100, b3 = 0.25), data = weeddata1, algorithm = "port"): Convergence failure: initial par violates constraints>

Both nlxb() and nls() (with 'port') do the right thing and refuse to pro-
ceed. There is a minor "glitch" in the output processing of both knitR and
Sweave here. Let us start them o� properly and see what they accomplish.

> ## Uncon solution has bounds ACTIVE. Feasible start

> anlxb2f <- try(nlxb(eunsc, start=startf1, lower=c(b1=0, b2=0, b3=0),

+ upper=c(b1=500, b2=100, b3=.25), data=weeddata1))

> print(anlxb2f)
nlmrt class object: x
residual sumsquares = 29.993 on 12 observations

after 13 Jacobian and 18 function evaluations
name coeff SE tstat pval gradient JSingval

b1 500U NA NA NA 0 1.529
b2 87.9425 NA NA NA -1.808e-10 0
b3 0.25U NA NA NA 0 0

> anlsb2f <- try(nls(eunsc, start=startf1, lower=c(b1=0, b2=0, b3=0),

+ upper=c(b1=500, b2=100, b3=.25), data=weeddata1, algorithm='port'))

> print(anlsb2f)
Nonlinear regression model

model: y ~ b1/(1 + b2 * exp(-b3 * tt))
data: weeddata1
b1 b2 b3

500.00 87.94 0.25
residual sum-of-squares: 30

Algorithm "port", convergence message: both X-convergence and relative convergence (5)

Both methods get essentially the same answer for the bounded problem, and
this solution has parameters b1 and b3 at their upper bounds. The Jacobian
elements for these parameters are zero as returned by nlxb().

Let us now turn to masks, which functions from nlmrt are designed to
handle. Masks are also available with packages Rcgmin and Rvmmin. I would
like to hear if other packages o�er this capability.

> ## TEST MASKS

> anlsmnqm <- try(nlxb(eunsc, start=start1, lower=c(b1=0, b2=0, b3=0),

13

+ upper=c(b1=500, b2=100, b3=5), masked=c("b2"), data=weeddata1))

> print(anlsmnqm) # b2 masked
nlmrt class object: x
residual sumsquares = 6181.2 on 12 observations

after 22 Jacobian and 35 function evaluations
name coeff SE tstat pval gradient JSingval

b1 50.4013 NA NA NA -0.001511 162.1
b2 1 M NA NA NA 0 0.4918
b3 0.19862 NA NA NA -0.0468 0

> an1qm3 <- try(nlxb(eunsc, start=start1, data=weeddata1, masked=c("b3")))

> print(an1qm3) # b3 masked
nlmrt class object: x
residual sumsquares = 1031 on 12 observations

after 17 Jacobian and 18 function evaluations
name coeff SE tstat pval gradient JSingval

b1 78.5698 NA NA NA 8.489e-08 1.944
b2 2293.71 NA NA NA -1.757e-09 0.01097
b3 1 M NA NA NA 0 0

> # Note that the parameters are put in out of order to test code.

> an1qm123 <- try(nlxb(eunsc, start=start1, data=weeddata1, masked=c("b2","b1","b3")))

> print(an1qm123) # ALL masked - fails!!
[1] "Error in nlxb(eunsc, start = start1, data = weeddata1, masked = c(\"b2\", : \n All parameters are masked\n"
attr(,"class")
[1] "try-error"
attr(,"condition")
<simpleError in nlxb(eunsc, start = start1, data = weeddata1, masked = c("b2", "b1", "b3")): All parameters are masked>

Finally (for nlxb) we combine the bounds and mask.

> ## BOUNDS and MASK

> an1qbm2 <- try(nlxb(eunsc, start=startf1, data=weeddata1,

+ lower=c(0,0,0), upper=c(200, 60, .3), masked=c("b2")))

> print(an1qbm2)
nlmrt class object: x
residual sumsquares = 6181.2 on 12 observations

after 17 Jacobian and 28 function evaluations
name coeff SE tstat pval gradient JSingval

b1 50.4016 NA NA NA 0.0004618 162.2
b2 1 M NA NA NA 0 0.4918
b3 0.198618 NA NA NA -0.0746 0

> an1qbm2x <- try(nlxb(eunsc, start=startf1, data=weeddata1,

+ lower=c(0,0,0), upper=c(48, 60, .3), masked=c("b2")))

> print(an1qbm2x)
nlmrt class object: x
residual sumsquares = 6206.1 on 12 observations

after 11 Jacobian and 20 function evaluations
name coeff SE tstat pval gradient JSingval

b1 48U NA NA NA 0 141.2
b2 1 M NA NA NA 0 0
b3 0.215971 NA NA NA -0.1502 0

Turning to the function-based nlfb,

> hobbs.res <- function(x){ # Hobbs weeds problem -- residual

+ if(length(x) != 3) stop("hobbs.res -- parameter vector n!=3")

+ y <- c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443, 38.558, 50.156, 62.948,

14

+ 75.995, 91.972)

+ tt <- 1:12

+ res <- x[1]/(1+x[2]*exp(-x[3]*tt)) - y

+ }

> hobbs.jac <- function(x) { # Hobbs weeds problem -- Jacobian

+ jj <- matrix(0.0, 12, 3)

+ tt <- 1:12

+ yy <- exp(-x[3]*tt)

+ zz <- 1.0/(1+x[2]*yy)

+ jj[tt,1] <- zz

+ jj[tt,2] <- -x[1]*zz*zz*yy

+ jj[tt,3] <- x[1]*zz*zz*yy*x[2]*tt

+ return(jj)

+ }

> # Check unconstrained

> ans1 <- nlfb(start1, hobbs.res, hobbs.jac)

> ans1
nlmrt class object: x
residual sumsquares = 2.5873 on 12 observations

after 18 Jacobian and 25 function evaluations
name coeff SE tstat pval gradient JSingval

b1 196.186 11.31 17.35 3.164e-08 -2.663e-07 1011
b2 49.0916 1.688 29.08 3.281e-10 1.59e-07 0.4605
b3 0.31357 0.006863 45.69 5.768e-12 -5.531e-05 0.04715

> ## No jacobian - use internal approximation

> ans1n <- nlfb(start1, hobbs.res)

> ans1n
nlmrt class object: x
residual sumsquares = 2.5873 on 12 observations

after 18 Jacobian and 25 function evaluations
name coeff SE tstat pval gradient JSingval

b1 196.186 11.31 17.35 3.164e-08 -2.663e-07 1011
b2 49.0916 1.688 29.08 3.281e-10 1.589e-07 0.4605
b3 0.31357 0.006863 45.69 5.768e-12 -5.528e-05 0.04715

> # Bounds -- infeasible start

> ans2i <- try(nlfb(start1, hobbs.res, hobbs.jac,

+ lower=c(b1=0, b2=0, b3=0), upper=c(b1=500, b2=100, b3=.25)))

> ans2i
[1] "Error in nlfb(start1, hobbs.res, hobbs.jac, lower = c(b1 = 0, b2 = 0, : \n Infeasible start\n"
attr(,"class")
[1] "try-error"
attr(,"condition")
<simpleError in nlfb(start1, hobbs.res, hobbs.jac, lower = c(b1 = 0, b2 = 0, b3 = 0), upper = c(b1 = 500, b2 = 100, b3 = 0.25)): Infeasible start>

> # Bounds -- feasible start

> ans2f <- nlfb(startf1, hobbs.res, hobbs.jac,

+ lower=c(b1=0, b2=0, b3=0), upper=c(b1=500, b2=100, b3=.25))

> ans2f
nlmrt class object: x
residual sumsquares = 29.993 on 12 observations

after 13 Jacobian and 18 function evaluations
name coeff SE tstat pval gradient JSingval

b1 500U NA NA NA 0 1.529
b2 87.9425 NA NA NA -1.809e-10 0
b3 0.25U NA NA NA 0 0

15

> # Mask b2

> ansm2 <- nlfb(start1, hobbs.res, hobbs.jac, maskidx=c(2))

> ansm2
nlmrt class object: x
residual sumsquares = 6181.2 on 12 observations

after 24 Jacobian and 38 function evaluations
name coeff SE tstat pval gradient JSingval

b1 50.4022 NA NA NA 0.001528 162.2
b2 1 M NA NA NA 0 0.4918
b3 0.198611 NA NA NA 0.04544 0

> # Mask b3

> ansm3 <- nlfb(start1, hobbs.res, hobbs.jac, maskidx=c(3))

> ansm3
nlmrt class object: x
residual sumsquares = 1031 on 12 observations

after 17 Jacobian and 18 function evaluations
name coeff SE tstat pval gradient JSingval

b1 78.5698 NA NA NA 8.489e-08 1.944
b2 2293.71 NA NA NA -1.757e-09 0.01097
b3 1 M NA NA NA 0 0

> # Mask all -- should fail

> ansma <- try(nlfb(start1, hobbs.res, hobbs.jac, maskidx=c(3,1,2)))

> ansma
[1] "Error in nlfb(start1, hobbs.res, hobbs.jac, maskidx = c(3, 1, 2)) : \n All parameters are masked\n"
attr(,"class")
[1] "try-error"
attr(,"condition")
<simpleError in nlfb(start1, hobbs.res, hobbs.jac, maskidx = c(3, 1, 2)): All parameters are masked>

> # Bounds and mask

> ansmbm2 <- nlfb(startf1, hobbs.res, hobbs.jac, maskidx=c(2),

+ lower=c(0,0,0), upper=c(200, 60, .3))

> ansmbm2
nlmrt class object: x
residual sumsquares = 6181.2 on 12 observations

after 17 Jacobian and 28 function evaluations
name coeff SE tstat pval gradient JSingval

b1 50.4016 NA NA NA 0.0004618 162.2
b2 1 M NA NA NA 0 0.4918
b3 0.198618 NA NA NA -0.0746 0

> # Active bound

> ansmbm2x <- nlfb(startf1, hobbs.res, hobbs.jac, maskidx=c(2),

+ lower=c(0,0,0), upper=c(48, 60, .3))

> ansmbm2x
nlmrt class object: x
residual sumsquares = 6206.1 on 12 observations

after 11 Jacobian and 20 function evaluations
name coeff SE tstat pval gradient JSingval

b1 48U NA NA NA 0 141.2
b2 1 M NA NA NA 0 0
b3 0.215971 NA NA NA -0.1502 0

The results match those of nlxb()
Finally, let us check the results above with Rvmmin and Rcgmin. Note that

this vignette cannot be created on systems that lack these codes.

16

> require(Rcgmin)

> require(Rvmmin)

> hobbs.f <- function(x) {

+ res<-hobbs.res(x)

+ as.numeric(crossprod(res))

+ }

> hobbs.g <- function(x) {

+ res <- hobbs.res(x) # Probably already available

+ JJ <- hobbs.jac(x)

+ 2.0*as.numeric(crossprod(JJ, res))

+ }

> # Check unconstrained

> a1cg <- Rcgmin(start1, hobbs.f, hobbs.g)

> a1cg
$par

b1 b2 b3
196.17510 49.09041 0.31358

$value
[1] 2.5873

$counts
[1] 573 195

$convergence
[1] 0

$message
[1] "Rcgmin seems to have converged"

> a1vm <- Rvmmin(start1, hobbs.f, hobbs.g)

> a1vm
$par

b1 b2 b3
196.18626 49.09164 0.31357

$value
[1] 2.5873

$counts
function gradient

81 41

$convergence
[1] 3

$message
[1] "Rvmminu appears to have converged"

> ## No jacobian - use internal approximation

> a1cgn <- try(Rcgmin(start1, hobbs.f))

> a1cgn
[1] "Error in Rcgmin(start1, hobbs.f) : \n Rcgmin must have gradient function provided. Call via optimr() to use approximations.\n"
attr(,"class")
[1] "try-error"
attr(,"condition")
<simpleError in Rcgmin(start1, hobbs.f): Rcgmin must have gradient function provided. Call via optimr() to use approximations.>

> a1vmn <- try(Rvmmin(start1, hobbs.f))

> a1vmn

17

$par
b1 b2 b3

35.532 35.785 35.204

$value
[1] 9205.4

$counts
function gradient

26 6

$convergence
[1] 0

$message
[1] "Rvmminu appears to have converged"

> # But

> grfwd <- function(par, userfn, fbase=NULL, eps=1.0e-7, ...) {

+ # Forward different gradient approximation

+ if (is.null(fbase)) fbase <- userfn(par, ...) # ensure we function value at par

+ df <- rep(NA, length(par))

+ teps <- eps * (abs(par) + eps)

+ for (i in 1:length(par)) {

+ dx <- par

+ dx[i] <- dx[i] + teps[i]

+ df[i] <- (userfn(dx, ...) - fbase)/teps[i]

+ }

+ df

+ }

> a1vmn <- try(Rvmmin(start1, hobbs.f, gr="grfwd"))

> a1vmn
$par

b1 b2 b3
35.532 35.785 35.204

$value
[1] 9205.4

$counts
function gradient

26 6

$convergence
[1] 0

$message
[1] "Rvmminu appears to have converged"

> # Bounds -- infeasible start

> # Note: These codes move start to nearest bound

> a1cg2i <- Rcgmin(start1, hobbs.f, hobbs.g,

+ lower=c(b1=0, b2=0, b3=0), upper=c(b1=500, b2=100, b3=.25))
Rcgminb: maxfeval set to 10000

> a1cg2i
$par

b1 b2 b3
500.000 87.942 0.250
attr(,"status")

18

[1] " " " " "U"

$value
[1] 29.993

$counts
[1] 88 45

$convergence
[1] 0

$message
[1] "Rcgmin seems to have converged"

$bdmsk
[1] -1 1 -1

> a1vm2i <- Rvmmin(start1, hobbs.f, hobbs.g,

+ lower=c(b1=0, b2=0, b3=0), upper=c(b1=500, b2=100, b3=.25))

> a1vm2i # Fails to get to solution!
$par

b1 b2 b3
500.000 87.942 0.250
attr(,"status")
[1] " " " " "U"

$value
[1] 29.993

$counts
function gradient

54 24

$convergence
[1] 2

$message
[1] "Rvmminb appears to have converged"

$bdmsk
[1] -1 1 -1

> # Bounds -- feasible start

> a1cg2f <- Rcgmin(startf1, hobbs.f, hobbs.g,

+ lower=c(b1=0, b2=0, b3=0), upper=c(b1=500, b2=100, b3=.25))
Rcgminb: maxfeval set to 10000

> a1cg2f
$par

b1 b2 b3
500.000 87.942 0.250

$value
[1] 29.993

$counts
[1] 65 37

$convergence
[1] 0

$message
[1] "Rcgmin seems to have converged"

$bdmsk
[1] -1 1 -1

19

> a1vm2f <- Rvmmin(startf1, hobbs.f, hobbs.g,

+ lower=c(b1=0, b2=0, b3=0), upper=c(b1=500, b2=100, b3=.25))

> a1vm2f # Gets there, but only just!
$par

b1 b2 b3
500.000 87.942 0.250

$value
[1] 29.993

$counts
function gradient

86 13

$convergence
[1] 2

$message
[1] "Rvmminb appears to have converged"

$bdmsk
[1] -1 1 -1

> # Mask b2

> a1cgm2 <- Rcgmin(start1, hobbs.f, hobbs.g, bdmsk=c(1,0,1))
Rcgminb: maxfeval set to 10000

> a1cgm2
$par

b1 b2 b3
50.40178 1.00000 0.19861

$value
[1] 6181.2

$counts
[1] 89 29

$convergence
[1] 0

$message
[1] "Rcgmin seems to have converged"

$bdmsk
[1] 1 0 1

> a1vmm2 <- Rvmmin(start1, hobbs.f, hobbs.g, bdmsk=c(1,0,1))

> a1vmm2
$par

b1 b2 b3
50.40179 1.00000 0.19861

$value
[1] 6181.2

$counts
function gradient

43 14

$convergence
[1] 3

$message
[1] "Rvmminb appears to have converged"

20

$bdmsk
[1] 1 0 1

> # Mask b3

> a1cgm3 <- Rcgmin(start1, hobbs.f, hobbs.g, bdmsk=c(1,1,0))
Rcgminb: maxfeval set to 10000

> a1cgm3
$par

b1 b2 b3
78.571 2293.947 1.000

$value
[1] 1031

$counts
[1] 182 75

$convergence
[1] 0

$message
[1] "Rcgmin seems to have converged"

$bdmsk
[1] 1 1 0

> a1vmm3 <- Rvmmin(start1, hobbs.f, hobbs.g, bdmsk=c(1,1,0))

> a1vmm3
$par

b1 b2 b3
78.571 2293.947 1.000

$value
[1] 1031

$counts
function gradient

39 29

$convergence
[1] 0

$message
[1] "Rvmminb appears to have converged"

$bdmsk
[1] 1 1 0

> # Mask all -- should fail

> a1cgma <- Rcgmin(start1, hobbs.f, hobbs.g, bdmsk=c(0,0,0))
Rcgminb: maxfeval set to 10000

> a1cgma
$par
b1 b2 b3
1 1 1

$value
[1] 23521

$counts
[1] 1 1

$convergence
[1] 0

21

$message
[1] "Rcgmin seems to have converged"

$bdmsk
[1] 0 0 0

> a1vmma <- Rvmmin(start1, hobbs.f, hobbs.g, bdmsk=c(0,0,0))

> a1vmma
$par
b1 b2 b3
1 1 1

$value
[1] 23521

$counts
function gradient

1 1

$convergence
[1] 0

$message
[1] "Rvmminb appears to have converged"

$bdmsk
[1] 0 0 0

> # Bounds and mask

> ansmbm2 <- nlfb(startf1, hobbs.res, hobbs.jac, maskidx=c(2),

+ lower=c(0,0,0), upper=c(200, 60, .3))

> ansmbm2
nlmrt class object: x
residual sumsquares = 6181.2 on 12 observations

after 17 Jacobian and 28 function evaluations
name coeff SE tstat pval gradient JSingval

b1 50.4016 NA NA NA 0.0004618 162.2
b2 1 M NA NA NA 0 0.4918
b3 0.198618 NA NA NA -0.0746 0

> a1cgbm2 <- Rcgmin(start1, hobbs.f, hobbs.g, bdmsk=c(1,0,1),

+ lower=c(0,0,0), upper=c(200, 60, .3))
Rcgminb: maxfeval set to 10000

> a1cgbm2
$par

b1 b2 b3
50.40179 1.00000 0.19861
attr(,"status")
[1] " " "M" "U"

$value
[1] 6181.2

$counts
[1] 71 28

$convergence
[1] 0

$message
[1] "Rcgmin seems to have converged"

$bdmsk
[1] 1 0 1

22

> a1vmbm2 <- Rvmmin(start1, hobbs.f, hobbs.g, bdmsk=c(1,0,1),

+ lower=c(0,0,0), upper=c(200, 60, .3))

> a1vmbm2
$par

b1 b2 b3
50.40179 1.00000 0.19861
attr(,"status")
[1] " " "M" "U"

$value
[1] 6181.2

$counts
function gradient

20 11

$convergence
[1] 0

$message
[1] "Rvmminb appears to have converged"

$bdmsk
[1] 1 0 1

> # Active bound

> a1cgm2x <- Rcgmin(start1, hobbs.f, hobbs.g, bdmsk=c(1,0,1),

+ lower=c(0,0,0), upper=c(48, 60, .3))
Rcgminb: maxfeval set to 10000

> a1cgm2x
$par

b1 b2 b3
48.00000 1.00000 0.21597
attr(,"status")
[1] " " "M" "U"

$value
[1] 6206.1

$counts
[1] 36 14

$convergence
[1] 0

$message
[1] "Rcgmin seems to have converged"

$bdmsk
[1] -1 0 1

> a1vmm2x <- Rvmmin(start1, hobbs.f, hobbs.g, bdmsk=c(1,0,1),

+ lower=c(0,0,0), upper=c(48, 60, .3))

> a1vmm2x
$par

b1 b2 b3
48.00000 1.00000 0.21597
attr(,"status")
[1] " " "M" "U"

$value
[1] 6206.1

$counts

23

function gradient
15 10

$convergence
[1] 0

$message
[1] "Rvmminb appears to have converged"

$bdmsk
[1] 1 0 1

6 Brief example of minpack.lm

Recently Kate Mullen provided some capability for the package minpack.lm to
include bounds constraints. I am particularly happy that this e�ort is proceed-
ing, as there are signi�cant di�erences in how minpack.lm and nlmrt are built
and implemented. They can be expected to have di�erent performance charac-
teristics on di�erent problems. A lively dialogue between developers, and the
opportunity to compare and check results can only improve the tools.

The examples below are a very quick attempt to show how to run the
Ratkowsky-Huet problem with nls.lm from minpack.lm.

> require(minpack.lm)

> anlslm <- nls.lm(ones, lower=rep(-1000,4), upper=rep(1000,4), jres, jjac, yield=pastured$yield, time=pastured$time)

> cat("anlslm from ones\n")
anlslm from ones

> print(strwrap(anlslm))
[1] "c(t1 = NaN, t2 = NaN, t3 = NaN, t4 = NaN)"
[2] "c(NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN,"
[3] "NaN, NaN, NaN, NaN, NaN, NaN)"
[4] "c(NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN)"
[5] "-1"
[6] "Number of iterations has reached `maxiter' == 50."
[7] "list(t1 = 3, t2 = NaN, t3 = NaN, t4 = NaN)"
[8] "50"
[9] "c(17533.3402000004, 16864.5616372991, NaN, NaN, NaN,"

[10] "NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN,"
[11] "NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN,"
[12] "NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN,"
[13] "NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN,"
[14] "NaN, NaN, NaN, NaN, NaN, 4.24399161290846e-313)"
[15] "NaN"

> anlslmh <- nls.lm(huetstart, lower=rep(-1000,4), upper=rep(1000,4), jres, jjac, yield=pastured$yield, time=pastured$time)

> cat("anlslmh from huetstart\n")
anlslmh from huetstart

> print(strwrap(anlslmh))
[1] "c(t1 = 69.9551973916736, t2 = 61.6814877170941, t3 ="
[2] "-9.20891880263442, t4 = 2.37781455978467)"
[3] "c(9, -4.54037977686007, 105.318033221555,"
[4] "403.043210394646, -4.54037977686007,"
[5] "3.51002837648689, -39.5314537948582,"
[6] "-137.559566823765, 105.318033221555,"
[7] "-39.5314537948582, 1668.11894086463, 6495.6770219983,"
[8] "403.043210394646, -137.559566823765, 6495.6770219983,"

24

[9] "25481.4530263827)"
[10] "c(0.480682793156284, 0.669303022602282,"
[11] "-2.28431914156848, 0.843754801653773,"
[12] "0.734587578832205, 0.0665510313004276,"
[13] "-0.985814877917534, -0.0250630130722698,"
[14] "0.500317790294616)"
[15] "1"
[16] "Relative error in the sum of squares is at most"
[17] "`ftol'."
[18] "list(t1 = 3, t2 = 2.35105755434962, t3 ="
[19] "231.250186433367, t4 = 834.778914353851)"
[20] "42"
[21] "c(13386.9099465603, 13365.3097414383,"
[22] "13351.1970260154, 13321.6478455192, 13260.1135652244,"
[23] "13133.6391318145, 12877.8542053848, 12373.5432344283,"
[24] "11428.8257706578, 9832.87890178625, 7138.12187613237,"
[25] "3904.51162830831, 2286.64875980737, 1978.18149980306,"
[26] "1620.89081508973, 1140.58638304326, 775.173148616758,"
[27] "635.256627921479, 383.73614705125, 309.341249993346,"
[28] "219.735856060244, 177.398738179149, 156.718991828473,"
[29] "135.51359456819, 93.4016394568234, 72.8219383036211,"
[30] "66.3315609834918, 56.2809616213409, 54.9453021619835,"
[31] "53.6227655715768, 51.9760950696957, 50.1418078879664,"
[32] "48.1307021647523, 44.709775710931, 42.8838792615121,"
[33] "32.3474231559242, 26.5253835687495, 15.3528215541072,"
[34] "14.721550701286, 8.37980617628203, 8.37589765770218,"
[35] "8.37588365348105, 8.37588355972584)"
[36] "8.37588355972584"

References

[1] Timur V. Elzhov, Katharine M. Mullen, Andrej-Nikolai Spiess, and Ben
Bolker, minpack.lm: R interface to the levenberg-marquardt nonlinear least-

squares algorithm found in minpack, plus support for bounds, R Project for
Statistical Computing, 2012, R package version 1.1-6.

[2] S. (Sylvie) Huet et al., Statistical tools for nonlinear regression: a practical

guide with S-PLUS examples, Springer series in statistics, 1996.

[3] J. J. Moré, B. S. Garbow, and K. E. Hillstrom, ANL-80-74, User Guide for

MINPACK-1, Tech. report, 1980.

[4] J. C. Nash, Compact numerical methods for computers : linear algebra and

function minimisation, Hilger, Bristol :, 1979 (English).

[5] David A. Ratkowsky, Nonlinear regression modeling: A uni�ed practical ap-

proach, Marcel Dekker Inc., New York and Basel, 1983.

25

